Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic emulsion polymerization

In addition to electrostatic colloid stabilization generated by anionic surfactants, liquid dispersions are also made from nonionic surfactants. Stabilization of the emulsion is achieved by electrosteric stabilization or by pure steric stabilization (2,13). Polyoxyethylene dodecyl ethers, polyoxyethylene nonyl phenyl ethers, and polyoxyethylene nonyl phenol ethers are a few surfactants typically used in emulsion polymerization with nonionic surfactants (14-16). Non-ionic emulsion polymerizations are characterized by lower critical micelle concentration than their ionic counterparts. Thus, the emulsion particle sizes are generally much larger than in the ionic polymerizations. The mechanism of radical entry and exit in polymeric surfactant stabilizer systems are different than in anionic systems. With water-soluble initiators, the kinetics depends on initiator concentration. [Pg.1236]

Among other original studies, catanionic vesicles were also used as templates for the crosslinking reaction of tetramethylcyclotetrasiloxane or D inside their bilayers this led to the creation of nonporous, impermeable, highly crosslinked, water-filled hollow spheres of about lOOnm diameter [106,107]. Various reports on the preparation of inorganic/organic core-shell particles via a simultaneous or two-step radical and ionic emulsion polymerization are outlined later in the chapter. [Pg.76]

The product of an emulsion polymerization is a latex ie, polymer particles on the order of 0.5—0.15 p.m stabilized by the soap. These form the basis for the popular latex paints. SoHd mbber is recovered by coagulating the latex with ionic salts and acids (see Latex technology). [Pg.437]

The quahty of the water used in emulsion polymerization has long been known to affect the manufacture of ESBR. Water hardness and other ionic content can direcdy affect the chemical and mechanical stabiUty of the polymer emulsion (latex). Poor latex stabiUty results in the formation of coagulum in the polymerization stage as well as other parts of the latex handling system. [Pg.494]

Medvedev et al. [57] extensively studied the use of nonionic emulsifiers in emulsion polymerization. The emulsion polymerizations in the presence of nonionic emulsifiers exhibited some differences relative to those carried out with the ionic ones. Medvedev et al, [57] proposed that the size of latex particles remained constant during the reaction period, but their number increased continually with the increasing monomer conversion. The use of nonionic emulsifiers in emulsion polymerization usually results in larger sizes relative to those obtained by the ionic emulsifiers. It is possible to reach a final size value of 250 nm by the use of nonionic emulsifiers in the emulsion polymerization of styrene [58]. [Pg.198]

The free radical initiators are more suitable for the monomers having electron-withdrawing substituents directed to the ethylene nucleus. The monomers having electron-supplying groups can be polymerized better with the ionic initiators. The water solubility of the monomer is another important consideration. Highly water-soluble (relatively polar) monomers are not suitable for the emulsion polymerization process since most of the monomer polymerizes within the continuous medium, The detailed emulsion polymerization procedures for various monomers, including styrene [59-64], butadiene [61,63,64], vinyl acetate [62,64], vinyl chloride [62,64,65], alkyl acrylates [61-63,65], alkyl methacrylates [62,64], chloroprene [63], and isoprene [61,63] are available in the literature. [Pg.198]

Emulsion polymerization is widely used to produce polymers in the form of emulsions, such as paints and floor polishes. It also used to polymerize many water insoluble vinyl monomers, such as styrene and vinyl chloride. In emulsion polymerization, an agent emulsifies the monomers. Emulsifying agents should have a finite solubility. They are either ionic, as in the case of alkylbenzene sulfonates, or nonionic, like polyvinyl alcohol. [Pg.316]

Photolysis or thermolysis of persulfate ion (41) (also called peroxydisulfate) results in hoinolysis of the 0-0 bond and formation of two sulfate radical anions. The thermal reaction in aqueous media has been widely studied."51 232 The rate of decomposition is a complex function of pH, ionic strength, and concentration. Initiator efficiencies for persulfate in emulsion polymerization are low (0.1-0.3) and depend upon reaction conditions (Le. temperature, initiator concentration)."33... [Pg.94]

Solution polymerization is bulk polymerization in which excess monomer serves as the solvent. Solution polymerization, used at approximately 13 plants, is a newer, less conventional process than emulsion polymerization for the commercial production of crumb mbber. Polymerization generally proceeds by ionic mechanisms. This system permits the use of stereospecific catalysts of the Ziegler-Natta or alkyl lithium types which make it possible to polymerize monomers into a cis structure characteristic that is very similar to that of natural rubber. This cis structure yields a rubbery product, as opposed to a trans stmcture which produces a rigid product similar to plastics. [Pg.549]

Monomer and initiator must be soluble in the liquid and the solvent must have the desired chain-transfer characteristics, boiling point (above the temperature necessary to carry out the polymerization and low enough to allow for ready removal if the polymer is recovered by solvent evaporation). The presence of the solvent assists in heat removal and control (as it also does for suspension and emulsion polymerization systems). Polymer yield per reaction volume is lower than for bulk reactions. Also, solvent recovery and removal (from the polymer) is necessary. Many free radical and ionic polymerizations are carried out utilizing solution polymerization including water-soluble polymers prepared in aqueous solution (namely poly(acrylic acid), polyacrylamide, and poly(A-vinylpyrrolidinone). Polystyrene, poly(methyl methacrylate), poly(vinyl chloride), and polybutadiene are prepared from organic solution polymerizations. [Pg.186]

Carrying out an emulsion polymerization requires an awareness of the krafft point of an ionic surfactant and the cloud point of a nonionic surfactant. Micelles are formed only at temperatures above the Krafft point of an ionic surfactant. For a nonionic surfactant, micelles are formed only at temperatures below the cloud point. Emulsion polymerization is carried out below the cloud temperature of a nonionic surfactant and above the Krafft temperature of an ionic surfactant. [Pg.365]

Nonionic surfactants such as sorbitan monooleate yield more stable emulsions than do ionic surfactants, However, the latices from inverse emulsion polymerizations are generally less stable than those from conventional emulsion polymerizations, and flocculation is a problem. [Pg.367]

Features 2 to 4 are attributed to the aqueous medium. Emulsion polymerization forms submicrometer-sized particles, so-called latex particles. The particles are stabilized with ionic and/or noionic emulsifiers. The process to form submicrometer particles is very complicate because of the contribution of two phases, aqueous and oil, to particle. The mechanism of emulsion polymerization is described in the next section. [Pg.593]

Derivatives of acyclic olefins can be used as chain transfer agents in these polymerizations. The most effective are those with a terminal double bond. For example, in the ROMP of 248 catalysed by [Ru(H20)6](0Ts)2 the transfer constant (klr/kp) for CH2=CHCH2CH20H is 0.21. The size of the polymer particles produced by emulsion polymerization of 248, using RUCI3 with a non-ionic surfactant, is of the order of 0.03 /zm577. [Pg.1581]

In the present experiments greatly enhanced rates of thermal emulsion polymerization were observed when potassium octadecanoate or sodium dodecyl sulfate (at 0.12 mol dm ) whereas sodium dodecyl benzene sulfonate and Triton1 X-100 (Rohm Haas, a non-ionic emulsifier octylphenoxypoly(ethyleneoxy)-ethanol) did not enhance the rate. The conversion after 12 hr at 60 °C with potassium octadecanoate was 69 % whereas with sodium dodecyl benzene sulphonate it was only 29 % (Fig. 2). [Pg.473]

Emulsion Polymerization Copolym erization Ionic Chain Polymerization it Lives ... [Pg.83]

Comparison of the Two Reactions Step-Growth Polymerization in More Detail Making PET in the Melt Interfacial Poly condensation Chain-Growth Polymerization in More Detail Free Radical Chain Polymerization Going One Step Better Emulsion Polymerization Copolymerization Ionic Chain Polymerization It Lives ... [Pg.289]

In the previous sections, methods of qualitatively controlling the course of propagation were described. Indirect control as well as the quantitative effects caused by intentional control of the other partial processes in polymerization have still to be mentioned. The separation of initiation from propagation alters the kinetic character of the whole reaction. With ionic polymerizations, initiation can be separated from propagation by the selection of conditions suitable for rapid initiation. With radical polymerizations, this is not possible. Therefore both partial processes must be separated in space. Fortunately, radical active centres operate both in polar and in non polar media. Thus it is not difficult to confine initiation and propagation to mutually immiscible components of the medium. Emulsion polymerization remains the most important representative of quantitative control of propagation. [Pg.280]


See other pages where Ionic emulsion polymerization is mentioned: [Pg.33]    [Pg.289]    [Pg.289]    [Pg.417]    [Pg.800]    [Pg.803]    [Pg.33]    [Pg.289]    [Pg.289]    [Pg.417]    [Pg.800]    [Pg.803]    [Pg.279]    [Pg.463]    [Pg.15]    [Pg.191]    [Pg.200]    [Pg.376]    [Pg.178]    [Pg.86]    [Pg.206]    [Pg.86]    [Pg.352]    [Pg.121]    [Pg.600]    [Pg.648]    [Pg.197]    [Pg.26]    [Pg.463]    [Pg.13]    [Pg.7]    [Pg.206]    [Pg.62]   
See also in sourсe #XX -- [ Pg.769 ]




SEARCH



Emulsion polymerization

Emulsion polymerization with ionic emulsifiers

Emulsions ionic

Emulsions, polymeric

Ionic polymerization

Ionic polymerizations polymerization

Polymerization emulsion polymerizations

© 2024 chempedia.info