Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interiors systems

Fig. D.5 The mesh network to solve the momentum equation for the axial velocity distribution in a rectangular channel. As illustrated, the control volumes are square. However, the spreadsheet is programmed to permit different values for dx and dy. Because of the symmetry in this problem, only one quadrant of the system is modeled. The upper and left-hand boundary are the solid walls, where a zero-velocity boundary condition is imposed. The lower and right-hand boundaries are symmetry boundaries, where special momentum balance equations are developed to represent the symmetry. As illustrated, there is an 12 x 12 node network corresponding to a 10 x 10 interior system of control volumes (illustrated as shaded boxes). The velocity at the nodes represents the average value of the velocity in the surrounding control volume. There are half-size control volumes along the boundaries, with the corresponding velocities represented by the boundary values. There is a quarter-size control volume in the lower-left-hand corner. Fig. D.5 The mesh network to solve the momentum equation for the axial velocity distribution in a rectangular channel. As illustrated, the control volumes are square. However, the spreadsheet is programmed to permit different values for dx and dy. Because of the symmetry in this problem, only one quadrant of the system is modeled. The upper and left-hand boundary are the solid walls, where a zero-velocity boundary condition is imposed. The lower and right-hand boundaries are symmetry boundaries, where special momentum balance equations are developed to represent the symmetry. As illustrated, there is an 12 x 12 node network corresponding to a 10 x 10 interior system of control volumes (illustrated as shaded boxes). The velocity at the nodes represents the average value of the velocity in the surrounding control volume. There are half-size control volumes along the boundaries, with the corresponding velocities represented by the boundary values. There is a quarter-size control volume in the lower-left-hand corner.
Automotive Components Trim Products Systems Front End Systems Bodyside Systems Rear End Systems Greenhouse Systems Interior systems Non-Automotive Products... [Pg.482]

Global Geochemical Cycle-Mass Transfer Between Earth s Surface System and Interior System... [Pg.157]

Calendered TPO skin laminated to polyolefin foam core for lower instrument panels are produced by PolyOne Engineered Film for assembly to the i.p. substrate. The instrument panels are assembled by Delphi Automotive Interior Systems from Mytex TPO thermoformed skin/foam laminates. TPO provides resistance to heat, UV, scratch, ductility, low gloss grain, soft touch, and minimal fogging. [Pg.607]

It could not be considered, that chassis systems considered as hard real-time, power-train systems as firm real-time and interior system are soft real time systems. ISO 26262 defines the fault-tolerant-time-interval as the basic criterion to specify safety-related timing-specific requirements. This interval defines a period of time, within faults should be controlled by the system (see also Chap. 3 of this book). The consequences of a missing deadline can only be evaluated by the consequences of the fault-error propagation in the latter, consequences of the possible hazard due to resulting malfunctions. [Pg.208]

Delphi Safety and Interior Systems, Troy, Michigan, U.SA. Thomas Pickett... [Pg.279]

Since solids do not exist as truly infinite systems, there are issues related to their temiination (i.e. surfaces). However, in most cases, the existence of a surface does not strongly affect the properties of the crystal as a whole. The number of atoms in the interior of a cluster scale as the cube of the size of the specimen while the number of surface atoms scale as the square of the size of the specimen. For a sample of macroscopic size, the number of interior atoms vastly exceeds the number of atoms at the surface. On the other hand, there are interesting properties of the surface of condensed matter systems that have no analogue in atomic or molecular systems. For example, electronic states can exist that trap electrons at the interface between a solid and the vacuum [1]. [Pg.86]

The simplest approach to understanding the reduced melting point in nanocrystals relies on a simple thennodynamic model which considers the volume and surface as separate components. Wliether solid or melted, a nanocrystal surface contains atoms which are not bound to interior atoms. This raises the net free energy of the system because of the positive surface free energy, but the energetic cost of the surface is higher for a solid cluster than for a liquid cluster. Thus the free-energy difference between the two phases of a nanocrystal becomes smaller as the cluster size... [Pg.2912]

The binding behaviour of benzene can be extrapolated to many other aromatic compounds such as naphthalene and benzene derivativesInterestingly, a large number of probe molecules contain aromatic rings and many of them will prefer the outer regions of micelles, whereas in bilayer systems, the same molecules prefer the interior of the aggregate ". Qearly these probes cannot be used to determine polarity of the micellar interior or the extent of water penetration therein . [Pg.129]

A second isomer of [lOJannulene (the cis trans cis cis trans stereoisomer) can have bond angles close to 120° but is destabilized by a close contact between two hydro gens directed toward the interior of the ring To minimize the van der Waals strain between these hydrogens the nng adopts a nonplanar geometry which limits its ability to be stabilized by tt electron delocalization It too has been prepared and is not very stable Similarly the next higher (4n + 2) system [14]annulene is also somewhat desta bilized by van der Waals strain and is nonplanar... [Pg.455]

The adhesive used in virtually all softwood plywood has a phenol—formaldehyde (PF) base to provide an exterior-grade, durable, waterproof bond. Thus, most grades of plywood can be used in stmctural appHcations. A very small percentage of softwood plywood is made using interior-grade adhesive systems, and this material is used in interior cabinetry, furniture, and shelving. [Pg.384]

Propellants cast into rockets are commonly case-bonded to the motors to achieve maximum volumetric loading density. The interior of the motor is thoroughly cleaned, coated using an insulating material, and then lined with a composition to which the propellant binder adheres under the environmental stresses of the system. The insulation material is generally a mbber-type composition, filled with siUca, titanium dioxide, or potassium titanate. SiUca-filled nitrate mbber and vulcanizable ethylene—propylene mbber have been used. The liner generally consists of the same base polymer as is used in the propellant. It is usually appHed in a thin layer, and may be partially or fully cured before the propellant is poured into the rocket. [Pg.49]

Fiber cross sections are also deterrnined by the coagulation conditions or, in the case of dry spinning, by the solvent evaporation process. The skin that forms early in the solvent removal process may remain intact as the interior of the filament deflates from solvent removal. Wet spun fibers from organic solvents are often bean shaped, while those from inorganic solvent systems are often round. Dry spun fibers, such as Du Font s Odon, are... [Pg.281]

Disjoining Pressure. A static pressure difference can be imposed between the interior and exterior of a soap film by several means including, for example, gravity. In such cases the equiHbrium film thickness depends on the imposed pressure difference as weU as on the effective interface potential. When the film thickness does not minimize lV(f), there arises a disjoining pressure II = —dV/(U which drives the system towards mechanical equiHbrium. [Pg.428]

Filtration installations include wrapping the trench of a pavement-edge drain system to prevent contamination of the underdrain placement behind retaining walls and bridge abutments to prevent contamination of the sand blanket placed against the stmcture to allow dissipation of pore pressures in order to avoid failure of the stmcture as silt fences to allow surface mnoff from a site while retaining the soil suspended in the mnoff and on earth slopes beneath larger stone or other overlay materials to prevent erosion of the slope as water escapes from the interior of the slope. [Pg.260]

Printed circuit boards manufacture is aided by the use of KMnO. Alkaline permanganate solution is used to remove resin smeared on the interior hole wall of multilayered printed circuit boards. Additionally the hole wall is etched, resulting in a surface with excellent adhesion characteristics, for electrodeless copper (250). The alkaline permanganate etchback system containing >60 g/L KMnO and 40-80 g/L NaOH at 70—80°C, is effective for difunctional, tetrafiinctional, and polyimide resin substrates, where the level of etchback is direcdy proportional to the immersion time (10—20 min) (251). [Pg.528]

Depth filters are usually preferred for the most common type of microfiltration system, illustrated schematically in Figure 28. In this process design, called "dead-end" or "in-line" filtration, the entire fluid flow is forced through the membrane under pressure. As particulates accumulate on the membrane surface or in its interior, the pressure required to maintain the required flow increases until, at some point, the membrane must be replaced. The useful life of the membrane is proportional to the particulate loading of the feed solution. In-line microfiltration of solutions as a final polishing step prior to use is a typical apphcation (66,67). [Pg.77]


See other pages where Interiors systems is mentioned: [Pg.135]    [Pg.91]    [Pg.360]    [Pg.371]    [Pg.482]    [Pg.135]    [Pg.203]    [Pg.235]    [Pg.135]    [Pg.91]    [Pg.360]    [Pg.371]    [Pg.482]    [Pg.135]    [Pg.203]    [Pg.235]    [Pg.405]    [Pg.2424]    [Pg.148]    [Pg.351]    [Pg.6]    [Pg.690]    [Pg.107]    [Pg.393]    [Pg.171]    [Pg.41]    [Pg.42]    [Pg.425]    [Pg.409]    [Pg.171]    [Pg.124]    [Pg.129]    [Pg.156]    [Pg.540]    [Pg.540]    [Pg.307]    [Pg.307]    [Pg.23]    [Pg.37]    [Pg.308]   
See also in sourсe #XX -- [ Pg.315 ]




SEARCH



Interior

© 2024 chempedia.info