Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Instrumentation concepts sensitivity

It should be noted that these results are only preliminary and have to be considered as a proof of concept. As is clear from eq. (2) the phase contrast can be improved drastically by improving the global resolution and sensitivity of the instrument. Currently, a high resolution desktop system is under construction [5] in which the resolution is much better than that of the instrument used in this work, and in which the phase contrast is expected to be stronger by one order of magnitude. [Pg.577]

The nebulization concept has been known for many years and is commonly used in hair and paint spays and similar devices. Greater control is needed to introduce a sample to an ICP instrument. For example, if the highest sensitivities of detection are to be maintained, most of the sample solution should enter the flame and not be lost beforehand. The range of droplet sizes should be as small as possible, preferably on the order of a few micrometers in diameter. Large droplets contain a lot of solvent that, if evaporated inside the plasma itself, leads to instability in the flame, with concomitant variations in instrument sensitivity. Sometimes the flame can even be snuffed out by the amount of solvent present because of interference with the basic mechanism of flame propagation. For these reasons, nebulizers for use in ICP mass spectrometry usually combine a means of desolvating the initial spray of droplets so that they shrink to a smaller, more uniform size or sometimes even into small particles of solid matter (particulates). [Pg.106]

In principle GD-MS is very well suited for analysis of layers, also, and all concepts developed for SNMS (Sect. 3.3) can be used to calculate the concentration-depth profile from the measured intensity-time profile by use of relative or absolute sensitivity factors [3.199]. So far, however, acceptance of this technique is hesitant compared with GD-OES. The main factors limiting wider acceptance are the greater cost of the instrument and the fact that no commercial ion source has yet been optimized for this purpose. The literature therefore contains only preliminary results from analysis of layers obtained with either modified sources of the commercial instrument [3.200, 3.201] or with homebuilt sources coupled to quadrupole [3.199], sector field [3.202], or time-of-flight instruments [3.203]. To summarize, the future success of GD-MS in this field of application strongly depends on the availability of commercial sources with adequate depth resolution comparable with that of GD-OES. [Pg.179]

Before moving on to excerpt 4E, we call your attention to two ways in which the concept of zero is addressed in excerpt 4D. First, we consider the concept of zero in measured concentrations (i.e., the concentrations reported in the last column of Table 1). Recall that no chromium oxalate was detected in the cells however, the authors do not report this with a zero. Rather, they use the phrase below the detection limit in the text and the less-than symbol (e.g., <0.025 mg/g) in Table 1, which puts an upper limit on the amount of chromium oxalate present. Novice writers might (incorrectly) suggest that no chromium was present in the text and use a zero in the table (0 mg/g). Such uses of zero, however, are incorrect, because (for measured concentrations) zero varies with the sensitivity of the detecting instrument. For example, on one instrument, zero will be less than one part per million on a more sensitive instrument, zero will be less than one part per billion. Instead of reporting zero, authors report that the measurement was below the detection limit for that instrument. Some common ways to express this concept in the text and table are as follows ... [Pg.132]

Such considerations have led to development of the concept of predictive power, which is more directly useful in evaluating the results from a screening instrument. Positive predictive power is the probability that a child identified by the instrument as having the disorder or symptom actually does have it, and negative predictive power is the probability that a child identified as not having the disorder or symptom actually does not have it. In some ways, predictive power is the converse of specificity and sensitivity, but it usually also depends on the base rate. If sensitivity is 100% then the negative predictive power would be 100%. If specificity is 100%, then positive predictive power is 100%. But when sensitivity and specificity are less than 100% (the usual situation), the base rate enters into the calculation. With 90% sensitivity, 90% specificity, and a 5% base rate, there are 4.5% true positives, 85.5%... [Pg.407]

Both the detection limit and the limit of quantification, as defined, are often not very stable characteristics of an analytical method, because the blank signal and the signal generated by the very low concentrations of the analyte are frequently dependent on certain analytical parameters, including the purity of reagents, sample matrices, environmental conditions, instrumentation, and the analysts themselves. Sensitivity is a measure of the ability of an analytical method to discriminate between small differences in analyte concentration. It is defined as the analyte signal per unit concentration of the analyte. Despite the apparent simplicity of the sensitivity concept, a degree of confusion surrounds its use. This confusion stems from the perception that the sensitivity of a method is the same as the limit of detection. [Pg.759]

Another important concept is parsimony. This means that if you have to select among several models that perform more or less equally, the preferred model is the one that has fewer factors, because the fewer factors are used, the less sensitive its predictions will be to non-relevant spectral phenomena. Hence the PLS model will still be useful for future unknowns even when slight dilfe-rences appear (e.g. some smooth instrumental drift, slightly higher noise, etc.). Such a model is said to be more parsimonious than the others. [Pg.204]

Phase Dynamics utilizes a unique, patented microwave concept to diagnose and measure molecular transformation process parameters with high sensitivity and accuracy (Phase Dynamics 1992). While originally developed for fluid measurements, the instrumentation is adaptable to most pumpable process lines and to some batch applications. The technique has been utilized for compositional analyses of true solutions as well as complex solid-liquid systems such as colloids and emulsions. Monitoring of molecular transitions which occur in cooking processes, hydrogenation, gelatinization and hydrolysis can also be monitored. [Pg.223]

The fact of modulating the square root of Q was naturally supported by the results of the Levich theory in steady-state conditions [8]. With the increasing development of impedance techniques, aided by a sophisticated instrumentation [2], the authors of the present work promoted the use of impedance concept for this type of perturbation and introduced the so-called electrohydrodynamic (EHD) impedance [9, 10]. A parallel approach has been also investigated by use of velocity steps in both theoretical and experimental studies [5, 11, 12]. More recently, Schwartz et al. considered the case of hydrodynamic modulations of large amplitude for increasing the sensitivity of the current response and also for studying additional terms arisen with non linearities [13-15],... [Pg.209]

Recent advances in circuit miniaturization and column technology, the development of microprocessors and new concepts in instrument design have allowed sensitive measurement at the parts per billion and parts per trillion levels for many toxicants. This increased sensitivity has focused public attention on the extent of environmental pollution, because many toxic materials present in minute quantities could not be detected until technological advances reached the present state of the art. At present, most pollutants are identified and quantified by chromatography, spectroscopy, and bioassays. [Pg.449]

Reaction cells appear to be a much better way to reduce signals due to Ar-containing molecular ions and Ar+ itself than the use of cold plasma conditions. Because normal plasma conditions are used, elements with high ionization energies, such as Se and As, do not suffer from sensitivity losses, unlike cold plasma conditions. The severe chemical matrix effects that are typical of cold plasma conditions are prevented. The first commercial ICP-MS instrument to use this concept was introduced by Micromass UK Ltd. However, as noted, reaction product ions must be controlled or removed to prevent other (new) spectral overlaps. [Pg.109]

Various approaches have been used to define detection limit for the multivariate situation [24], The first definition was developed by Lorber [19]. This multivariate definition is of limited use because it requires concentration knowledge of all analytes and interferences present in calibration samples or spectra of all pure components in the calibration samples. However, the work does introduce the important concept of net analyte signal (NAS) vector for multivariate systems. The NAS representation has been extended to the more usual multivariate situations described in this chapter [25-27], where the NAS is related to the regression vector b in Equation 5.11. Mathematically, b = NAS/ NAS and NAS = 1/ b. Thus, the norm of the NAS vector is the same as the effective sensitivity discussed in Section 5.4.9.1 A simple form of the concentration multivariate limit of detection (LOD) can be expressed as LOD = 3 MINI, where e denotes the vector of instrumental noise values for the m wavelengths. The many proposed practical approaches to multivariate detection limits are succinctly described in the literature [24],... [Pg.134]

There are excellent HPLC systems available on the market today, yet there is one area of concern with this instrumentation, and this rests with the detection units. Certainly the most widely used detector system employs a low dead-volume micro-ultraviolet detector. This latter unit operates near 200 nm and detects mainly unsaturated linkages in phospholipids (or lipid) samples. Some contribution by carbonyl functions can be expected. This approach is an advantage when the sample under study contains olefinic groups, but will not detect those with saturated side (hydrocarbon) chains. An alternative detector is the refractive index monitor which is often called a universal detector, since it is based on the concept that the refractive index of the solvent changes when a solute is present. The drawback of the latter unit lies in its sensitivity, which is approximately 15- to 20-fold less than that of the ultraviolet monitor. [Pg.57]

In contrast to SPFS, SPR, and SPDS are tools that can study biomolecular interactions without external labels. They share the same category of label-free biosensors with the reflectometry interference spectroscopy (RIfS) [46], waveguide spectroscopy [47], quartz crystal microbalance (QCM) [48], micro-cantilever sensors [49], etc. Although the label-free sensors cannot compete with SPFS in terms of sensitivity [11], they are however advantageous in avoiding any additional cost/time in labeling the molecules. In particular, the label-free detection concept eliminates undue detrimental effects originating from the labels that may interfere with the fundamental interaction. In this sense, it is worthwhile to develop and improve such sensors as instruments complementary to those ultra-sensitive sensors that require labels. [Pg.78]


See other pages where Instrumentation concepts sensitivity is mentioned: [Pg.171]    [Pg.93]    [Pg.239]    [Pg.239]    [Pg.309]    [Pg.329]    [Pg.330]    [Pg.1806]    [Pg.33]    [Pg.3]    [Pg.240]    [Pg.250]    [Pg.103]    [Pg.457]    [Pg.231]    [Pg.564]    [Pg.25]    [Pg.321]    [Pg.88]    [Pg.12]    [Pg.316]    [Pg.94]    [Pg.961]    [Pg.833]    [Pg.30]    [Pg.8]    [Pg.30]    [Pg.241]    [Pg.404]    [Pg.147]    [Pg.454]    [Pg.554]    [Pg.366]    [Pg.2]    [Pg.292]    [Pg.2]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Instrumentation concepts

Sensitivity instrument

Sensitivity instrumental

© 2024 chempedia.info