Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared catalytic

A flame-ionization, total hydrocarbon analyzer determines the THC, and the total carbon content is calculated as methane. Other methods include catalytic combustion to carbon dioxide, which may be deterrnined by a sensitive infrared detector of the nondispersive type. Hydrocarbons other than methane and acetylene are present only in minute quantities and generally are inert in most appHcations. [Pg.480]

At the time of writing, in all papers published on adsorption studies on oxides surfaces, spectra have been reported of samples held at the ambient temperature of the sample compartment. It is obvious that when dealing with very volatile adsorbates, low temperature sample cells may be required to increase adsorption and also to prevent rapid desorption of the adsorbed species. In some instances, it is also desirable to record the spectra of species held at elevated temperatures for better correlation with industrial catalytic systems. It should be noted that there are only a few infrared spectra reported in the literature for high temperature studies of catalytic reactions. Sample emission at elevated temperature is a significant experimental complication in investigations of this type. [Pg.319]

His researches and those of his pupils led to his formulation in the twenties of the concept of active catalytic centers and the heterogeneity of catalytic and adsorptive surfaces. His catalytic studies were supplemented by researches carried out simultaneously on kinetics of homogeneous gas reactions and photochemistry. The thirties saw Hugh Taylor utilizing more and more of the techniques developed by physicists. Thermal conductivity for ortho-para hydrogen analysis resulted in his use of these species for surface characterization. The discovery of deuterium prompted him to set up production of this isotope by electrolysis on a large scale of several cubic centimeters. This gave him and others a supply of this valuable tracer for catalytic studies. For analysis he invoked not only thermal conductivity, but infrared spectroscopy and mass spectrometry. To ex-... [Pg.444]

Additional information concerning the mechanisms of solid—solid interactions has been obtained by many diverse experimental approaches, as the following examples testify adsorptive and catalytic properties of the reactant mixture [1,111], reflectance spectroscopy [420], NMR [421], EPR [347], electromotive force determinations [421], tracer experiments [422], and doping effects [423], This list cannot be comprehensive. Electron probe microanalysis has also been used as an analytical (rather than a kinetic) tool [422,424] for the determination of distributions of elements within the reactant mixture. Infrared analyses have been used [425] for the investigation of the solid state reactions between NH3 and S02 at low temperatures in the presence and in the absence of water. [Pg.39]

Some infrared data on these catalytic systems also support the intermediate complex formation (123). For a heterogeneous system of Cu metal and cyclohexyl isocyanide one observes, in solution, a vcn absorption at 2180 cm , compared to 2140 cm for the free isocyanide. Absorptions at 2181 and 2192 cm for the systems with CujO and CuCl, respectively, are measured. The solutions in each case have catalytic activity. The suggestion is made that either a copper(O) complex (from Cu metal) or copper(I) isocyanide complex (from CU2O or CuCl) is the catalytic species present. [Pg.48]

Elementary steps in which a bond is broken form a particularly important class of reactions in catalysis. The essence of catalytic action is often that the catalyst activates a strong bond that cannot be broken in a direct reaction, but which is effectively weakened in the interaction with the surface, as we explained in Chapter 6. To monitor a dissociation reaction we need special techniques. Temperature-programmed desorption is an excellent tool for monitoring reactions in which products desorb. However, when the reaction products remain on the surface, one needs to employ different methods such as infrared spectroscopy or secondary-ion mass spectrometry (SIMS). [Pg.282]

Much of the pioneering work which led to the discovery of efficient catalysts for modern Industrial catalytic processes was performed at a time when advanced analytical Instrumentation was not available. Insights Into catalytic phenomena were achieved through gas adsorption, molecular reaction probes, and macroscopic kinetic measurements. Although Sabatier postulated the existence of unstable reaction Intermediates at the turn of this century. It was not until the 1950 s that such species were actually observed on solid surfaces by Elschens and co-workers (2.) using Infrared spectroscopy. Today, scientists have the luxury of using a multitude of sophisticated surface analytical techniques to study catalytic phenomena on a molecular level. Nevertheless, kinetic measurements using chemically specific probe molecules are still the... [Pg.26]

In the case of selective oxidation catalysis, the use of spectroscopy has provided critical Information about surface and solid state mechanisms. As Is well known( ), some of the most effective catalysts for selective oxidation of olefins are those based on bismuth molybdates. The Industrial significance of these catalysts stems from their unique ability to oxidize propylene and ammonia to acrylonitrile at high selectivity. Several key features of the surface mechanism of this catalytic process have recently been descrlbed(3-A). However, an understanding of the solid state transformations which occur on the catalyst surface or within the catalyst bulk under reaction conditions can only be deduced Indirectly by traditional probe molecule approaches. Direct Insights Into catalyst dynamics require the use of techniques which can probe the solid directly, preferably under reaction conditions. We have, therefore, examined several catalytlcally Important surface and solid state processes of bismuth molybdate based catalysts using multiple spectroscopic techniques Including Raman and Infrared spectroscopies, x-ray and neutron diffraction, and photoelectron spectroscopy. [Pg.27]

Although much progress has been made toward understanding the nature and probable catalytic behavior of active sites on CoMo/alumlna catalysts, much obviously remains to be accomplished. Detailed explanation of the acidic character of the reduced metal sites evidently most important In HDS, and presumably In related reactions, must await the Increased understanding which should come from studies of simplified model catalysts using advanced surface science techniques. Further progress of an Immediately useful nature seems possible from additional Infrared study of the variations produced In the exposed metal sites as a result of variations In preparation, pretreatment, and reaction conditions. [Pg.432]

Peri, J. B. In "Infrared Spectroscopy In Catalytic Research" J. R. Anderson and M. Boudart, Eds. CATALYSIS-SCIENCE AND TECHNOLOGY Vol. 5, Sprlnger-Verlag, Berlin, Heidelberg, New York, 198A pp. 172-220. [Pg.434]

It is only since 1980 that in situ spectroscopic techniques have been developed to obtain identification of the adsorbed intermediates and hence of reliable reaction mechanisms. These new infrared spectroscopic in situ techniques, such as electrochemically modulated infrared reflectance spectroscopy (EMIRS), which uses a dispersive spectrometer, Fourier transform infrared reflectance spectroscopy, or a subtractively normalized interfacial Fourier transform infrared reflectance spectroscopy (SNIFTIRS), have provided definitive proof for the presence of strongly adsorbed species (mainly adsorbed carbon monoxide) acting as catalytic poisons. " " Even though this chapter is not devoted to the description of in situ infrared techniques, it is useful to briefly note the advantages and limitations of such spectroscopic methods. [Pg.76]

In the present study, we synthesized in zeolite cavities Co-Mo binary sulfide clusters by using Co and Mo carbonyls and characterized the clusters by extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and high resolution electron microscopy (HREM). The mechanism of catalytic synergy generation in HDS is discussed. [Pg.503]

At present, most workers hold a more realistic view of the promises and difficulties of work in electrocatalysis. Starting in the 1980s, new lines of research into the state of catalyst surfaces and into the adsorption of reactants and foreign species on these surfaces have been developed. Techniques have been developed that can be used for studies at the atomic and molecular level. These techniques include the tunneling microscope, versions of Fourier transform infrared spectroscopy and of photoelectron spectroscopy, differential electrochemical mass spectroscopy, and others. The broad application of these techniques has considerably improved our understanding of the mechanism of catalytic effects in electrochemical reactions. [Pg.553]

Surface-enhanced infrared study of catalytic electrooxidation of formaldehyde, methyl formate, and dimethoxymethane on platinum electrodes in acidic solution. [Pg.101]

J. Phys. Chem. B, 106, 5143-5154. Somorjai, G. A. and Rupprechter, G. (1999) Molecular studies of catalytic reactions on crystal surfaces at high pressures and high temperatures by infrared-visible sum frequency generation (SFG) surface vibrational spectroscopy. J. Phys. Chem., 103, 1623-1638. [Pg.113]

Catalytic dehydrogenation of alcohol is an important process for the production of aldehyde and ketone (1). The majority of these dehydrogenation processes occur at the hquid-metal interface. The liquid phase catalytic reaction presents a challenge for identifying reaction intermediates and reaction pathways due to the strong overlapping infrared absorption of the solvent molecules. The objective of this study is to explore the feasibility of photocatalytic alcohol dehydrogenation. [Pg.405]

Complementary in-situ characterization of the surface species using infrared (IR) spectroscopy has provided information on the identity and coverage of the surface species involved in the NO catalytic reduction [56]. It was found that the changes observed in the surface coverages of NO and CO correlate well with the observed changes in N20 selectivity mentioned above below 635 K, where N20 formation is favored, NO is the major adsorbate on the surface, whereas above 635 K, where N2 formation is preferred,... [Pg.80]

Figure 3.7. In-situ reflection-absorption infrared (RAIRS) spectra as a function of catalyst temperature from a Pd(lll) single-crystal surface in the presence of a NO + CO gas mixture (240mbar, Pco/Pno = 1-5) [66]. The data clearly show the appearance of an isocyanate-related band at 2256 cm-1 at temperatures above 500 K. In-situ spectroscopic experiments such as these have proven indispensable to detect and identify key reaction intermediates for the catalytic reduction of NO on metal surfaces. (Figure provided by Professor Goodman and reproduced with permission from the American Chemical Society, Copyright 2003). Figure 3.7. In-situ reflection-absorption infrared (RAIRS) spectra as a function of catalyst temperature from a Pd(lll) single-crystal surface in the presence of a NO + CO gas mixture (240mbar, Pco/Pno = 1-5) [66]. The data clearly show the appearance of an isocyanate-related band at 2256 cm-1 at temperatures above 500 K. In-situ spectroscopic experiments such as these have proven indispensable to detect and identify key reaction intermediates for the catalytic reduction of NO on metal surfaces. (Figure provided by Professor Goodman and reproduced with permission from the American Chemical Society, Copyright 2003).
In order to get closer from the catalytic conditions (for example in DeNO reaction exhaust gases are to be treated) investigators developed reactor cells allowing the infrared study of catalysts underflow. The principle of transient technique is then to introduce... [Pg.120]


See other pages where Infrared catalytic is mentioned: [Pg.42]    [Pg.42]    [Pg.938]    [Pg.2788]    [Pg.186]    [Pg.127]    [Pg.177]    [Pg.161]    [Pg.277]    [Pg.334]    [Pg.911]    [Pg.338]    [Pg.549]    [Pg.266]    [Pg.465]    [Pg.280]    [Pg.26]    [Pg.404]    [Pg.64]    [Pg.600]    [Pg.149]    [Pg.615]    [Pg.619]    [Pg.463]    [Pg.136]    [Pg.239]    [Pg.95]    [Pg.95]    [Pg.99]    [Pg.103]    [Pg.181]    [Pg.485]   
See also in sourсe #XX -- [ Pg.329 , Pg.330 , Pg.331 ]




SEARCH



Catalytic infrared drying

Relative Quantification of Catalytic Activity in Combinatorial Libraries by Emissivity-Corrected Infrared Thermography

© 2024 chempedia.info