Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

INDEX spectroscopy

The detailed examination of the behavior of light passing through or reflected by an interface can, in principle, allow the determination of the monolayer thickness, its index of refiraction and absorption coefficient as a function of wavelength. The subjects of ellipsometry, spectroscopy, and x-ray reflection deal with this goal we sketch these techniques here. [Pg.126]

Vacha M, Yokoyama N, Tokizaki T, Furuki M and Tani T 1999 Laser scanning microscope for low temperature single molecule and microscale spectroscopy based on gradient index optics Rev. Sc/. Instrum. 70 2041-5... [Pg.2505]

Solution Polymers. Acryflc solution polymers are usually characterized by their composition, solids content, viscosity, molecular weight, glass-transition temperature, and solvent. The compositions of acryflc polymers are most readily determined by physicochemical methods such as spectroscopy, pyrolytic gas—liquid chromatography, and refractive index measurements (97,158). The solids content of acryflc polymers is determined by dilution followed by solvent evaporation to constant weight. Viscosities are most conveniently determined with a Brookfield viscometer, molecular weight by intrinsic viscosity (158), and glass-transition temperature by calorimetry. [Pg.171]

Microscopy (qv) plays a key role in examining trace evidence owing to the small size of the evidence and a desire to use nondestmctive testing (qv) techniques whenever possible. Polarizing light microscopy (43,44) is a method of choice for crystalline materials. Microscopy and microchemical analysis techniques (45,46) work well on small samples, are relatively nondestmctive, and are fast. Evidence such as sod, minerals, synthetic fibers, explosive debris, foodstuff, cosmetics (qv), and the like, lend themselves to this technique as do comparison microscopy, refractive index, and density comparisons with known specimens. Other microscopic procedures involving infrared, visible, and ultraviolet spectroscopy (qv) also are used to examine many types of trace evidence. [Pg.487]

Mass Spectroscopy. A coUection of 125,000 spectra is maintained at Cornell University and is avaUable from John WUey Sons, Inc. (New York) on CD-ROM or magnetic tape. The spectra can be evaluated using a quaHty index algorithm (63,76). Software for use with the magnetic tape version to match unknowns is distributed by Cornell (77). The coUection contains aU avaUable spectral information, including isotopicaUy labeled derivatives, partial spectra, and multiple spectra of a single compound. [Pg.121]

When simple Hquids like naphtha are cracked, it may be possible to determine the feed components by gas chromatography combined with mass spectrometry (gc/ms) (30). However, when gas oil is cracked, complete analysis of the feed may not be possible. Therefore, some simple definitions are used to characterize the feed. When available, paraffins, olefins, naphthenes, and aromatics (PONA) content serves as a key property. When PONA is not available, the Bureau of Mines Correlation Index (BMCI) is used. Other properties like specific gravity, ASTM distillation, viscosity, refractive index. Conradson Carbon, and Bromine Number are also used to characterize the feed. In recent years even nuclear magnetic resonance spectroscopy has been... [Pg.434]

In Raman spectroscopy the intensity of scattered radiation depends not only on the polarizability and concentration of the analyte molecules, but also on the optical properties of the sample and the adjustment of the instrument. Absolute Raman intensities are not, therefore, inherently a very accurate measure of concentration. These intensities are, of course, useful for quantification under well-defined experimental conditions and for well characterized samples otherwise relative intensities should be used instead. Raman bands of the major component, the solvent, or another component of known concentration can be used as internal standards. For isotropic phases, intensity ratios of Raman bands of the analyte and the reference compound depend linearly on the concentration ratio over a wide concentration range and are, therefore, very well-suited for quantification. Changes of temperature and the refractive index of the sample can, however, influence Raman intensities, and the band positions can be shifted by different solvation at higher concentrations or... [Pg.259]

The refractive index of the sample can be written as a complex number 2 = n2 — ik2. At wavelengths where the sample is not absorbing, 2, the absorption constant, equals zero. However, kj is non-zero at wavelengths where the sample is absorbing. In transmission spectroscopy, the intensity of an absorption band depends almost entirely on k2 while in ATR the intensity of the same band is a complex function of 2 and 2- Nevertheless, the statement made previously still holds. There will be absorption bands in ATR at wavelengths where 2 0. Thus, bands are expected at the same wavelengths in transmission and in ATR but their intensities may be dissimilar. [Pg.246]

In order to understand RAIR spectroscopy, it is convenient to model the experiment (see Fig. 4). Consider a thin film with refractive index n =n ik and thickness d supported by a reflecting substrate with refractive index ni = ri2 — iki- The refractive index of the ambient atmosphere is o- Infrared radiation impinges on the film at an angle of incidence of 6 . The incident radiation can be polarized parallel to or perpendicular to the plane of incidence. [Pg.249]

It is important to note that comparable information to that obtained from infra-red spectroscopy can in principle be obtained from refractive index measurements. It has been shown that for a transversely isotropic film, the relationship equivalent to 11(c) is... [Pg.90]

In situ Fourier transform infrared and in situ infrared reflection spectroscopies have been used to study the electrical double layer structure and adsorption of various species at low-index single-crystal faces of Au, Pt, and other electrodes.206"210 It has been shown that if the ions in the solution have vibrational bands, it is possible to relate their excess density to the experimentally observed surface. [Pg.41]

Spherical rollers were machined from AISI 52100 steel, hardened to a Rockwell hardness of Rc 60 and manually polished with diamond paste to RMS surface roughness of 5 nm. Two glass disks with a different thickness of the silica spacer layer are used. For thin film colorimetric interferometry, a spacer layer about 190 nm thick is employed whereas FECO interferometry requires a thicker spacer layer, approximately 500 nm. In both cases, the layer was deposited by the reactive electron beam evaporation process and it covers the entire underside of the glass disk with the exception of a narrow radial strip. The refractive index of the spacer layer was determined by reflection spectroscopy and its value for a wavelength of 550 nm is 1.47. [Pg.12]

The film thickness and retractive index were calculated using spectroscopic ellipsometry. X-ray photoelectron spectroscopy (XPS) was used for composition analysis. Auger electron spectroscopy (AES) and secondary ion mass spectroscopy (SIMS) was used to investigate the depth profiles of the film. [Pg.374]

Experimental values (in parentheses) from microwave spectroscopy [2] and interstellar measurements [3 (upper index )... [Pg.324]

Most suitable for the examination of the surface is x-ray photoelectron spectroscopy, whereas the wettability determination can be established by a detailed interpretation of core flooding experiments and wettability index measurements. The results of such studies show that the organic carbon content in the surface is well correlated with the wetting behavior of the material characterized by petrophysical measurements [1467,1468]. [Pg.231]

Chang SC, Leung LWH, Weaver MJ. 1990. Metal crystallinity effects in electrocatalysis as prohed hy real-time ETIR spectroscopy electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces. J Phys Chem 94 6013-6021. [Pg.200]

Dunlap, B.D. Mdssbauer effect data index. In Stevens, J.G., Stevens, V.E. (eds.) An Introduction to Electric Quadrupole Interactions in Mdssbauer Spectroscopy. Adam Hilger, London (1972)... [Pg.376]


See other pages where INDEX spectroscopy is mentioned: [Pg.802]    [Pg.1123]    [Pg.1130]    [Pg.68]    [Pg.270]    [Pg.317]    [Pg.220]    [Pg.151]    [Pg.483]    [Pg.410]    [Pg.96]    [Pg.233]    [Pg.368]    [Pg.100]    [Pg.143]    [Pg.10]    [Pg.99]    [Pg.331]    [Pg.332]    [Pg.548]    [Pg.4]    [Pg.136]    [Pg.274]    [Pg.334]   
See also in sourсe #XX -- [ Pg.20 , Pg.127 ]

See also in sourсe #XX -- [ Pg.163 ]




SEARCH



Fluorescence correlation spectroscopy INDEX

Fluorescence spectroscopy 1032 INDEX

INDEX UV-vis spectroscopy

INDEX infrared spectroscopy

INDEX spectroscopy, definition

INDEX vibrational spectroscopy

Infrared spectroscopy carbonyl index

Mass spectroscopy INDEX

Nuclear magnetic resonance spectroscopy 484 INDEX

Spectroscopy, applications INDEX

Subject index Nuclear magnetic resonance spectroscopy

Visible-ultraviolet spectroscopy refractive index

© 2024 chempedia.info