Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Visible-ultraviolet spectroscopy refractive index

The most commonly-used detectors are those based on spectrophotometry in the region 184-400nm, visible ultraviolet spectroscopy in the region 185-900nm, post-column derivativisation with fluorescence detection (see below), conductivity and those based on the relatively new technique of multiple wavelength ultraviolet detectors using a diode array system detector (described below). Other types of detectors available are those based on electrochemical principles, refractive index, differential viscosity and mass detection. [Pg.6]

Microscopy (qv) plays a key role in examining trace evidence owing to the small size of the evidence and a desire to use nondestmctive testing (qv) techniques whenever possible. Polarizing light microscopy (43,44) is a method of choice for crystalline materials. Microscopy and microchemical analysis techniques (45,46) work well on small samples, are relatively nondestmctive, and are fast. Evidence such as sod, minerals, synthetic fibers, explosive debris, foodstuff, cosmetics (qv), and the like, lend themselves to this technique as do comparison microscopy, refractive index, and density comparisons with known specimens. Other microscopic procedures involving infrared, visible, and ultraviolet spectroscopy (qv) also are used to examine many types of trace evidence. [Pg.487]

Noble gases are intrinsically difficult to detect by spectroscopy. For example, solar photospheric spectra, which form the basis for solar abundance values of most elements, do not contain lines from noble gases (except for He, but this line cannot be used for abundance determinations). Yet, ultraviolet spectroscopy is the only or the major source of information on noble gas abundances in the atmospheres of Mercury and comets. In the Extreme Ultraviolet (EUV), photon energies exceed bond energies of molecules and the first ionization potential of all elements except F, He, and Ne, so that only these elements are visible in this part of the spectrum (Krasnopolsky et al. 1997). Other techniques can be used to determine the abundance of He where this element is a major constituent. Studies of solar oscillations (helioseismology) allow a precise determination of the He abundance in the solar interior, and the interferometer on the Galileo probe yielded a precise value for the refractive index and hence the He abundance in the upper atmosphere of Jupiter (see respective sections of this chapter). [Pg.23]

We have seen that the enantiomers of a molecule have the same properties (melting and boiling points, refractive index, etc.) and that spectroscopy that does not involve polarized light is incapable of distinguishing between them, so that their infrared, NMR, ultraviolet-visible and Raman spectra are identical. On the other hand, the optical rotation, optical dispersion and circular dichroism give results that are opposite in sign for the two enantiomers. We have also seen that in certain cases it is possible to determine the absolute configuration of a molecule in the crystal by X-ray diffraction. [Pg.48]

This article provides some general remarks on detection requirements for FIA and related techniques and outlines the basic features of the most commonly used detection principles, including optical methods (namely, ultraviolet (UV)-visible spectrophotometry, spectrofluorimetry, chemiluminescence (CL), infrared (IR) spectroscopy, and atomic absorption/emission spectrometry) and electrochemical techniques such as potentiometry, amperometry, voltammetry, and stripping analysis methods. Very few flowing stream applications involve other detection techniques. In this respect, measurement of physical properties such as the refractive index, surface tension, and optical rotation, as well as the a-, //-, or y-emission of radionuclides, should be underlined. Piezoelectric quartz crystal detectors, thermal lens spectroscopy, photoacoustic spectroscopy, surface-enhanced Raman spectroscopy, and conductometric detection have also been coupled to flow systems, with notable advantages in terms of automation, precision, and sampling rate in comparison with the manual counterparts. [Pg.1275]


See other pages where Visible-ultraviolet spectroscopy refractive index is mentioned: [Pg.220]    [Pg.705]    [Pg.151]    [Pg.66]    [Pg.223]    [Pg.160]    [Pg.520]   
See also in sourсe #XX -- [ Pg.667 ]




SEARCH



INDEX spectroscopy

Spectroscopy ultraviolet visible

Ultraviolet index

Ultraviolet spectroscopy

Ultraviolet-visible

© 2024 chempedia.info