Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

INDEX importance

In many respects, the foundations and framework of the proposed risk-based hazardous waste classification system and the recommended approaches to implementation are intended to be neutral in regard to the degree of conservatism in protecting public health. With respect to calculations of risk or dose in the numerator of the risk index, important examples include (1) the recommendation that best estimates (MLEs) of probability coefficients for stochastic responses should be used for all substances that cause stochastic responses in classifying waste, rather than upper bounds (UCLs) as normally used in risk assessments for chemicals that induce stochastic effects, and (2) the recommended approach to estimating threshold doses of substances that induce deterministic effects in humans based on lower confidence limits of benchmark doses obtained from studies in humans or animals. Similarly, NCRP believes that the allowable (negligible or acceptable) risks or doses in the denominator of the risk index should be consistent with values used in health protection of the public in other routine exposure situations. NCRP does not believe that the allowable risks or doses assumed for purposes of waste classification should include margins of safety that are not applied in other situations. [Pg.320]

Based on the AHP weighing determination methods, the said eight experts will compare and score the inter-index importance. The weighting is as shown in the following ... [Pg.772]

Two further examples of type I ternary systems are shown in Figure 19 which presents calculated and observed selectivities. For successful extraction, selectivity is often a more important index than the distribution coefficient. Calculations are shown for the case where binary data alone are used and where binary data are used together with a single ternary tie line. It is evident that calculated selectivities are substantially improved by including limited ternary tie-line data in data reduction. [Pg.71]

The predicted cumulative cash-flow curve for a project throughout its life forms the basis for more detailed evaluation. Many quantitative measures or indices have been proposed. In each case, important features of the cumulative cash-flow curve are identified and transformed into a single numerical measure as an index. [Pg.423]

An important application of this type of analysis is in the determination of the calculated cetane index. The procedure is as follows the cetane number is measured using the standard CFR engine method for a large number of gas oil samples covering a wide range of chemical compositions. It was shown that this measured number is a linear combination of chemical family concentrations as determined by the D 2425 method. An example of the correlation obtained is given in Figure 3.3. [Pg.52]

In describing a particular surface, the first important parameter is the Miller index that corresponds to the orientation of the sample. Miller indices are used to describe directions with respect to the tluee-dimensional bulk unit cell [2]. The Miller index indicating a particular surface orientation is the one that points m the direction of the surface nonual. For example, a Ni crystal cut perpendicular to the [100] direction would be labelled Ni(lOO). [Pg.284]

The WLN was applied to indexing the Chemical Structure Index (CSI) at the Institute for Scientific Information (ISI) [13] and the Ituiex Chemicus Registry System (ICRS) as well as the Crossbow System of Imperial Chemical Industries (ICl). With the introduction of connection tables in the Chemical Abstracts Service (CAS) in 1965 and the advent of molecular editors in the 1970s, which directly produced connection tables, the WLN lost its importance. [Pg.25]

Publications of this kind are described as non-original. They are abstracting services and handbooks that catch the primary literature, condense the important contents, and make this information available (searchable). Secondary literature is not evaluated and is provided in both printable and electronic forms. Examples are Gmelin, Beilstein, Citations Chemisches Zentralblatt, Chemical Abstracts, or Science Citation Index handbooks include Houben-Weyl, and Landolt Bomstein. [Pg.239]

The low reactivity of aliphatic ethers renders the problem of the preparation of suitable crystalline derivatives a somewhat difficult one. Increased importance is therefore attached to the physical properties (boding point, density and refractive index) as a means for providing preliminary information. There are, however, two reactions based upon the cleavage of the ethers which are useful for characterisation. [Pg.315]

Determination of the physical constants and the establishment of the purity of the compound. For a solid, the melting point is of great importance if recrystalhsation does not alter it, the compound may be regarded as pure. For a hquid, the boiling point is first determined if most of it distils over a narrow range (say, 1-2°), it is reasonably pure. (Constant boUing point mixtures, compare Section 1,4, are, however known.) The refractive index and the density, from which the molecular refractivity may be calculated, are also valuable constants for liquids. [Pg.1027]

Solvents exert their influence on organic reactions through a complicated mixture of all possible types of noncovalent interactions. Chemists have tried to unravel this entanglement and, ideally, want to assess the relative importance of all interactions separately. In a typical approach, a property of a reaction (e.g. its rate or selectivity) is measured in a laige number of different solvents. All these solvents have unique characteristics, quantified by their physical properties (i.e. refractive index, dielectric constant) or empirical parameters (e.g. ET(30)-value, AN). Linear correlations between a reaction property and one or more of these solvent properties (Linear Free Energy Relationships - LFER) reveal which noncovalent interactions are of major importance. The major drawback of this approach lies in the fact that the solvent parameters are often not independent. Alternatively, theoretical models and computer simulations can provide valuable information. Both methods have been applied successfully in studies of the solvent effects on Diels-Alder reactions. [Pg.8]

It is important to know whether a polymer will be stable, that is, whether it will not decompose at a given temperature. There are several measures of thermal stability, the most important of which (from an economic standpoint) is the Underwriters Laboratories (UL) temperature index. [Pg.315]

A glossary of important terms may be found immediately before the index at the back of the book... [Pg.7]

For an air/glass interface, tan 0b = n, the refractive index of glass. In a gas laser, the light must be reflected back and forth between mirrors and through the gas container hundreds of times. Each time the beam passes through the cavity, it must pass through transparent windows at the ends of the gas container (Figure 18.10b), and it is clearly important that this transmission be as efficient as possible. [Pg.128]

Equations (10.17) and (10.18) show that both the relative dielectric constant and the refractive index of a substance are measurable properties of matter that quantify the interaction between matter and electric fields of whatever origin. The polarizability is the molecular parameter which is pertinent to this interaction. We shall see in the next section that a also plays an important role in the theory of light scattering. The following example illustrates the use of Eq. (10.17) to evaluate a and considers one aspect of the applicability of this quantity to light scattering. [Pg.669]

Lithium Niobate. Lithium niobate [12031 -64-9], LiNbO, is normally formed by reaction of lithium hydroxide and niobium oxide. The salt has important uses in switches for optical fiber communication systems and is the material of choice in many electrooptic appHcations including waveguide modulators and sound acoustic wave devices. Crystals of lithium niobate ate usually grown by the Czochralski method foUowed by infiltration of wafers by metal vapor to adjust the index of refraction. [Pg.226]

Other organi2ations have assumed important positions in the field of patent documentation. IFl/Plenum Data Corp. (formerly Information for Industry) began in 1955 to index U.S. chemical patents by the Uniterm Index system. Uniterm indexing was eventually extended back to 1950. The acquisition in 1971 of Du Font s in-house indexing system and staff resulted in a more powerful system, the Comprehensive Data Base (CDB), which now covers U.S. chemical patents frommid-1964 to date. [Pg.48]

Citation Searching. In the scholarly Hterature, authors cite earHer pubHcations that relate to the work being reported, thus a subject relationship exists between the citing and cited Hterature. This relationship has formed the basis for the Science Citation Index and related products, developed by the Institute for Scientific Information. Known as Scisearch in its on-line version, the Science Citation Index has become an important information retrieval tool in the second half of the twentieth century. It has been used for straightforward subject searching, in which mode it complements traditional indexed databases and indexes. It has also become a popular tool for hihliometric studies of various sorts, such as attempts to measure the relative impact of research carried out by different individuals or organizations, or the relative impact of pubHcations in different journals. [Pg.58]

Coordinate Indexing and Boolean Logic. Three methods of indexing have been prominent in the chemical Hterature in recent times. The first, articulated indexing, has been used in printed Chemicaly hstracts subject indexes from their earliest days until well into the 1990s. A number of important concepts are identified as permissible index entries, including specific compounds, material types, reactions, and processes. One or more modifying statements foUow each basic index entry. Thus, eg. [Pg.59]


See other pages where INDEX importance is mentioned: [Pg.138]    [Pg.28]    [Pg.4]    [Pg.138]    [Pg.28]    [Pg.4]    [Pg.132]    [Pg.403]    [Pg.541]    [Pg.802]    [Pg.1309]    [Pg.1762]    [Pg.1884]    [Pg.2222]    [Pg.2872]    [Pg.71]    [Pg.175]    [Pg.261]    [Pg.692]    [Pg.374]    [Pg.173]    [Pg.311]    [Pg.264]    [Pg.121]    [Pg.125]    [Pg.114]    [Pg.543]    [Pg.4]    [Pg.9]    [Pg.10]    [Pg.48]    [Pg.55]    [Pg.59]    [Pg.60]    [Pg.62]   
See also in sourсe #XX -- [ Pg.122 ]

See also in sourсe #XX -- [ Pg.122 ]

See also in sourсe #XX -- [ Pg.42 ]




SEARCH



© 2024 chempedia.info