Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sensitivity increased

The offered method has allowed essentially to simplify the X-ray apparatus main circuit, to reduce weight and dimensions of the apparatus, to increase sensitivity and reliability of the inspection and to ensure the apparatus control by a computer The main principle is based on the operation of the transformer controlled by magnetic commutation (TCMC). [Pg.430]

NMR spectroscopy is always struggling for increased sensitivity and resolution, as well as more efficient use of the instrument time. To this end, numerous improvements of the simple inversion-recovery method have been proposed over the years. An early and unportant modification is the so-called fast mversion recovery... [Pg.1508]

As described above, classical infrared spectroscopy using grating spectrometers and gas cells provided some valuable infonnation in the early days of cluster spectroscopy, but is of limited scope. However, tire advent of tunable infrared lasers in tire 1980s opened up tire field and made rotationally resolved infrared spectra accessible for a wide range of species. As for microwave spectroscopy, tunable infrared laser spectroscopy has been applied botli in gas cells and in molecular beams. In a gas cell, tire increased sensitivity of laser spectroscopy makes it possible to work at much lower pressures, so tliat strong monomer absorjDtions are less troublesome. [Pg.2442]

One possible mechanism responsible for the abiHty of trenbolone acetate to stimulate skeletal muscle hypertrophy may be through enhanced proliferation and differentiation of satelHte ceUs as the result of increased sensitivity to insuHn-Hke growth factor-I (IGE-1) and fibroblast growth factor (43). [Pg.409]

To give increased sensitivity when the analysis is not limited by chemical noise, eg, in the ms/ms mode, array detectors (15) have been developed. [Pg.540]

Quantitative mass spectrometry, also used for pharmaceutical appHcations, involves the use of isotopicaHy labeled internal standards for method calibration and the calculation of percent recoveries (9). Maximum sensitivity is obtained when the mass spectrometer is set to monitor only a few ions, which are characteristic of the target compounds to be quantified, a procedure known as the selected ion monitoring mode (sim). When chlorinated species are to be detected, then two ions from the isotopic envelope can be monitored, and confirmation of the target compound can be based not only on the gc retention time and the mass, but on the ratio of the two ion abundances being close to the theoretically expected value. The spectrometer cycles through the ions in the shortest possible time. This avoids compromising the chromatographic resolution of the gc, because even after extraction the sample contains many compounds in addition to the analyte. To increase sensitivity, some methods use sample concentration techniques. [Pg.548]

The first-order decomposition rates of alkyl peroxycarbamates are strongly influenced by stmcture, eg, electron-donating substituents on nitrogen increase the rate of decomposition, and some substituents increase sensitivity to induced decomposition (20). Alkyl peroxycarbamates have been used to initiate vinyl monomer polymerizations and to cure mbbers (244). They Hberate iodine quantitatively from hydriodic acid solutions. Decomposition products include carbon dioxide, hydrazo and azo compounds, amines, imines, and O-alkyUiydroxylarnines. Many peroxycarbamates are stable at ca 20°C but decompose rapidly and sometimes violently above 80°C (20,44). [Pg.131]

The immunochemical interaction between the antigen and antibody is very specific. By labeling either the antigen or antibody, the method s sensitivity is increased. The most frequently used labels to increase sensitivity are radionucHdes (see Radioisotopes) where the assay process is called radioimmunoassay (RIA), or en2ymes where the assay is named en2yme immunoassay (ElA) (see Enzyme applications). [Pg.100]

Va.ria.tions in Methods. The various immunochemical methods can differ in a number of ways. For example, the analytical reagent may be cmde antisemm, monoclonal antibodies, isolated immunoglobulin fractions, etc. The conditions under which the method is mn, detection of the antigen—antibody complex, and the techniques used to increase sensitivity or specificity of the reaction all maybe varied. [Pg.101]

Multienzyme electrodes can increase sensitivity from micromolar to nanomolar detection levels (53,57). In this case the substrate is converted to a detectable product by one enzyme, then that product is recycled into the initial substrate by another enzyme resulting in an amplification of the response signal. For example, using lactate oxidase and lactate dehydrogenase immobilized in poly(vinyl chloride), an amplification of 250 was obtained for the detection oflactate (61). [Pg.103]

In the context of chemometrics, optimization refers to the use of estimated parameters to control and optimize the outcome of experiments. Given a model that relates input variables to the output of a system, it is possible to find the set of inputs that optimizes the output. The system to be optimized may pertain to any type of analytical process, such as increasing resolution in hplc separations, increasing sensitivity in atomic emission spectrometry by controlling fuel and oxidant flow rates (14), or even in industrial processes, to optimize yield of a reaction as a function of input variables, temperature, pressure, and reactant concentration. The outputs ate the dependent variables, usually quantities such as instmment response, yield of a reaction, and resolution, and the input, or independent, variables are typically quantities like instmment settings, reaction conditions, or experimental media. [Pg.430]

The insoluble, hydrophobic disperse dyes readily dye nylon, and because their mode of attraction is completely nonionic they are completely insensitive to chemical variations and pH. Small molecular-sized disperse dyes (ca mol wt 400) show very high rates of diffusion and excellent migration properties and they are insensitive to physical variations in the nylon. As the molecular size of disperse dyes increases they show increasing sensitivity to physical variation. [Pg.362]

Increased sensitivity towards acid is observed when protonation occurs on a functional group outside the diazirine ring, giving rise to electron dilution at the carbon atom adjacent to the diazirine carbon. The products isolated are in accord with the proposal (79AHC(24)63) that cation formation at this carbon atom leads to nitrogen extrusion, probably with formation of a vinyl cation. Thus protonated hydroxydiazirine (209) yields acetone, and methylvinyldiazirine (199) on treatment with acids yields butanone (67CB2093). [Pg.222]

Weight Sensing These devices have been the subject of intensive research, development, and applications. Increased sensitivity and rehability have been the result of this effort, which has been... [Pg.1943]

QRA is fundamentally different from many other chemical engineering activities (e.g., chemistry, heat transfer, reaction kinetics) whose basic property data are theoretically deterministic. For example, the physical properties of a substance for a specific application can often be established experimentally. But some of the basic property data used to calculate risk estimates are probabilistic variables with no fixed values. Some of the key elements of risk, such as the statistically expected frequency of an accident and the statistically expected consequences of exposure to a toxic gas, must be determined using these probabilistic variables. QRA is an approach for estimating the risk of chemical operations using the probabilistic information. And it is a fundamentally different approach from those used in many other engineering activities because interpreting the results of a QRA requires an increased sensitivity to uncertainties that arise primarily from the probabilistic character of the data. [Pg.2]

In other articles in this section, a method of analysis is described called Secondary Ion Mass Spectrometry (SIMS), in which material is sputtered from a surface using an ion beam and the minor components that are ejected as positive or negative ions are analyzed by a mass spectrometer. Over the past few years, methods that post-ion-ize the major neutral components ejected from surfaces under ion-beam or laser bombardment have been introduced because of the improved quantitative aspects obtainable by analyzing the major ejected channel. These techniques include SALI, Sputter-Initiated Resonance Ionization Spectroscopy (SIRIS), and Sputtered Neutral Mass Spectrometry (SNMS) or electron-gas post-ionization. Post-ionization techniques for surface analysis have received widespread interest because of their increased sensitivity, compared to more traditional surface analysis techniques, such as X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES), and their more reliable quantitation, compared to SIMS. [Pg.559]

ICPMS can be considered a high-sensitivity extension of mass spectrometry, as well as an increased-sensitivity detector replacing optical ICP (ICP-OES) analysis. In fret, both viewpoints are accurate, and the wide application of ICPMS analysis... [Pg.624]

In SXAPS the X-ray photons emitted by the sample are detected, normally by letting them strike a photosensitive surface from which photoelectrons are collected, but also - with the advent of X-ray detectors of increased sensitivity - by direct detection. Above the X-ray emission threshold from a particular core level the excitation probability is a function of the densities of unoccupied electronic states. Because two electrons are involved, incident and the excited, the shape of the spectral structure is proportional to the self convolution of the unoccupied state densities. [Pg.274]

Elimination of sample preparation and handling of toxic solvents such as carbon disulphide Absence of solvent simplifies chromatograph Increased sensitivity Sample tubes can be reused ... [Pg.321]

Pilot-operated valves may be satisfactorily used in vapor or liquid services up to a maximum back pressure (superimposed plus built-up) of 50% of set pressure, provided that the back pressure is incorporated into the sizing calculation. At higher back pressures, capacity becomes increasingly sensitive to small changes in back pressure. As an exception, back pressure up to 7% of set pressure may be used, provided that this disadvantage is recognized. [Pg.164]


See other pages where Sensitivity increased is mentioned: [Pg.2061]    [Pg.2964]    [Pg.2964]    [Pg.433]    [Pg.119]    [Pg.60]    [Pg.220]    [Pg.445]    [Pg.27]    [Pg.210]    [Pg.341]    [Pg.447]    [Pg.148]    [Pg.403]    [Pg.318]    [Pg.320]    [Pg.10]    [Pg.101]    [Pg.106]    [Pg.257]    [Pg.355]    [Pg.370]    [Pg.418]    [Pg.607]    [Pg.312]    [Pg.240]    [Pg.228]    [Pg.209]    [Pg.209]    [Pg.44]    [Pg.159]   
See also in sourсe #XX -- [ Pg.70 ]




SEARCH



Customer requirements - increasing sensitivity

Derivatization, increasing sensitivity

Increase of sensitivity pre-concentration techniques

Increased Detector Sensitivity with TUNE Circuit

Increasing Surface Sensitivity in Electron Mossbauer Spectroscopy

Sensitivity, increase

© 2024 chempedia.info