Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase transfer processes

If a neutral chelate formed from a ligand such as acetylacetone is sufficiently soluble in water not to precipitate, it may stiH be extracted into an immiscible solvent and thus separated from the other constituents of the water phase. Metal recovery processes (see Mineral recovery and processing), such as from dilute leach dump Hquors, and analytical procedures are based on this phase-transfer process, as with precipitation. Solvent extraction theory and many separation systems have been reviewed (42). [Pg.393]

With the discovery of the crowns and related species, it was inevitable that a search would begin for simpler and simpler relatives which might be useful in similar applications. Perhaps these compounds would be easier and more economical to prepare and ultimately, of course, better in one respect or another than the molecules which inspired the research. In particular, the collateral developments of crown ether chemistry and phase transfer catalysis fostered an interest in utilizing the readily available polyethylene glycol mono- or dimethyl ethers as catalysts for such reactions. Although there is considerable literature in this area, much of it relates to the use of simple polyethylene glycols in phase transfer processes. Since our main concern in this monograph is with novel structures, we will discuss these simple examples further only briefly, below. [Pg.311]

SECM-induced transfer [SECMIT Fig. 2(b)] can be used to characterize reversible phase transfer processes at a wide variety of interfaces. The basic idea is to perturb the process, initially at equilibrium, through local amperometry at the UME. Hitherto, diffusion-limited electrolysis has mainly been used in conjunction with metal tips, but ion transfer voltammetric probes (discussed briefly in Section III, and in detail in Chapter 15) can also be used. The application of a potential to the tip, sufficient to deplete the... [Pg.292]

The equilibrium constant is then connected to the thermodynamics of the mobile phase-stationary phase transfer process using classical expressions. [Pg.453]

The first catalysts utilized in phase transfer processes were quaternary onium salts. In particular, benzyltriethylammonium chloride was favored by Makosza (7 ) whereas Starks utilized the more thermally stable phosphonium salts (6,8). In either case, the catalytic process worked in the same way the ammonium or phosphonium cation exchanged for the cation associated with the nucleophilic reagent salt. The new reagent, Q+Nu , dissolved in the organic phase and effected substitution. [Pg.24]

In our initial studies of the polymerization of butyl acrylate by solid potassium persulfate in acetone solution (2), we attempted to relate the rate of polymerization to the ability of various crown ethers to complex the potassium cation. A reasonable correlation was discovered between log Rp and log K, where K represents the binding constant of the crown ether for in methanol solution (Figure 1). This finding provided some support for the idea that a typical phase transfer process was occurring in these reacti ons. [Pg.118]

Polymerization of butyl acrylate was also studied by us in ethyl acetate/water two phase systems (3) using potassium persulfate/quaternary ammonium salts as the initiator system. Under these conditions (a minimum amount of water was used to dissolve the persulfate), it was found that symmetrical quat salts were more efficient than surfactant type quat salts. Also, the more lipophilic quat salts were more efficient. These results prompted us to propose formation of an organic-soluble quaternary ammonium persulfate via typical phase transfer processes. [Pg.118]

Phase transfer catalysis (1,2) has become in recent years a widely used, well-established synthetic technique applied with advantage to a multitude of organic transformations. In addition to a steadily increasing number of reports in the primary literature, there are several reviews (3-6), comprehensive monographs (7-10) and an ACS Audio Course (1 ) which describe the phase transfer process and which provide extensive compilations of phase transfer agents and reaction types. While the list of applications and in many cases the synthetic results are impressive, phase transfer catalysts (PTCs) suffer some of the same disadvantages as more conventional hetero-and homogeneous catalysts — separation and... [Pg.169]

In these chapters, we focus on equilibrium situations and the associated problem of calculating the distribution of a compound between the different phases, when no net exchange occurs anymore. There are many situations in which it is correct to assume that phase transfer processes are fast compared to the other processes (e.g., transformations) determining a compound s fate. In such cases, it is appropriate to describe phase interchanges with an equilibrium approach. One example would be partitioning of compounds between a parcel of air and the aerosols suspended in it. Another case might be partitioning between the pore water and solids in sediment beds. [Pg.55]

With these first insights into the molecular interactions that govern the partitioning of organic compounds between different phases in the environment, we are now prepared to tackle some thermodynamic formalisms. We will need these parameters and their interrelationships for quantitative treatments of the various phase transfer processes discussed in the following chapters. [Pg.73]

In the field of environmental organic chemistry, the most common reference states used include (1) the pure liquid state, when we are concerned with phase transfer processes (2) the infinite dilution state, when we are dealing with reactions of... [Pg.77]

The process in which chemicals become associated with solid phases is generally referred to as sorption. It is absorption if the molecules attach to a two-dimensional surface, while it is absorption if the molecules penetrate into a three-dimensional matrix. This phase transfer process may involve vapor molecules or dissolved molecules associating with solid phases. [Pg.277]

Phase transfer processes describe the different methodologies that we have available for isolating samples for each of these methods. Which methods are best A focus of attention is the priority pollutant concept that the USEPA [U.S. Environmental Protection Agency] uses. Does the European community agree with the priority pollutant approach ... [Pg.738]

Sodium or potassium ions can also participate in the phase-transfer process when they are converted to lipophilic cations by complexation or by strong specific solvation. A variety of neutral organic compounds are able to form reasonably stable complexes with K+ or Na + and can act as catalysts in typical phase-transfer processes. Such compounds include monocyclic polyethers, or crown ethers (1), and bicyclic aminopolyethers (cryptates) (2). They can solubilize inorganic salts in nonpolar solvents and are particularly recommended for reactions of naked anions. Applications of these compounds have been studied.12,21-31... [Pg.179]

The pigments are formed in the fish scales as platelet-shaped crystals (0.05 pm x 1-10 pm x 20-50 pm). A commercial synthetic process for producing purines with this crystal shape has not been found. An aqueous suspension of fish scales is, therefore, extracted with organic solvents to dissolve and remove the proteins. The remaining dispersion contains purine crystals and scale which are separated from one another by a complicated washing and phase-transfer process [5.216]. [Pg.216]

Extensive treatments of general two-phase flow problems have been given in the monograph by Kutateladze and Styrikovich (K25) and in recent surveys by Dukler and Wicks (Dl7), and Scott (S4), all of which indicate clearly the important place of film flow in the over-all scheme of two-phase flow phenomena. Film flow is more amenable to detailed study than most other types of two-phase flow, and a detailed knowledge of the phenomena occurring in film flow (with or without an adjacent gas stream) would assist greatly in understanding many of the more complex types of two-phase flow and the mechanisms of heat and mass transfer in such flows. Numerous experimental studies have been made of various two-phase transfer processes, but these have led mainly to empirical correlations of more or less limited applicability. [Pg.153]

The method of linear solvation energy (LSER), based on the Kamlet-Taft multiparameter scale (10) has been successfully exploited to study retention in LC. The LSER approach, when applied to phase-transfer processes, correlates a general solute property (SP), such as logarithmic capacity factor, with parameters of the solute and both the mobile and stationary phases ... [Pg.8]

In the phase-transfer processes discussed in Section 11.2 it is assumed that the anionic hydride source, i.e. borohydride or a hypervalent hydrosilicate, forms an ion-pair with the chiral cationic phase-transfer catalyst. As a consequence, hydride transfer becomes enantioselective. An alternative is that the nucleophilic activator needed to effect hydride transfer from a hydrosilane can act as the chiral inducer itself (Scheme 11.6). [Pg.319]

Often, these adducts were characterized by vibrational spectroscopy, and Raman spectroscopic investigations were particularly informative and indicative for the occurrence of E E bonds. Some E E stretching vibrations vE E are summarized in Table I. They nicely show the expected dependency of vE E on the atomic masses of the respective elements and on the masses of the substituents. Some compounds were further characterized by nuclear quadrupole resonance spectroscopy, which gave indications for phase transfer processes and for the extent of electron transfer from the ligands to Ga or In atoms.15,16 Most helpful for the discussion of the constitution and conformation of these subhalides are the results of X-ray... [Pg.57]

Carbonylation of benzyl chloride This reaction can be effected with cobalt carbonyl or a palladium(O) catalyst under phase-transfer conditions. CeCl3 promotes this phase-transfer process and also permits the use of nickel(II) cyanide as the... [Pg.72]


See other pages where Phase transfer processes is mentioned: [Pg.186]    [Pg.254]    [Pg.323]    [Pg.200]    [Pg.150]    [Pg.151]    [Pg.153]    [Pg.155]    [Pg.157]    [Pg.159]    [Pg.161]    [Pg.163]    [Pg.165]    [Pg.167]    [Pg.169]    [Pg.171]    [Pg.173]    [Pg.175]    [Pg.247]    [Pg.8]    [Pg.35]    [Pg.54]    [Pg.55]    [Pg.85]    [Pg.735]    [Pg.217]    [Pg.32]   


SEARCH



Absorption, phase transfer processes

Cascade Processes Initiated by Conjugate Addition via Phase-transfer Catalysis

Desorption, phase transfer processes

Distillation phase transfer processes

Enantioselective phase transfer alkylation process

Extraction phase transfer processes

Moving Nanoparticles Around Phase-Transfer Processes in Nanomaterials Synthesis

Pervaporation, phase transfer processe

Phase processes

Phase transfer processes Subject

Synthetic Applications of Phase-transfer Processes

© 2024 chempedia.info