Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrochloric acid sampling

Abbasi [75] determined metavanadate in solution by a method based on the formation of a violet colour with vanadium( V) on addition of a chloroform solution of N-(p-NN dimethylanilino-3-methoxy-2-naphtho)hydroxamic acid to the acidified (4-6 mol/1 hydrochloric acid) sample. This solution was evaluated spectrophotometrically at 570 nm. The detection limit was 0.05 xg vanadium at a dilution ratio of 1 107. Very few interferences occur in this procedure. The method was also applied to extracts of soils, plants and geological samples. See also Sect. 2.29. [Pg.170]

The volume of sodium hydroxide solution required to just completely react with the hydrochloric acid sample is measured. If we know the concentration of the sodium hydroxide solution in moles per liter, then the number of nroles of NaOH added can be calculated (volume X molarity), and so we know the number of moles of HCl in the sample. Therefore, in this relative method, it is necessary to prepare a reacting solution (sodium hydroxide) of accurately known concentration. [Pg.13]

T = titration (ml) of hydrochloric acid, sample T, = titration (ml) of hydrochloric acid, blank f = normality of hydrochloric acid W = weight (g) of sample taken for analysis... [Pg.117]

The gas is washed with water to remove any hydrogen chloride. Since iron(II) sulphide is a non-stoichiometric compound and always contains some free iron, the hydrogen sulphide always contains some hydrogen, liberated by the action of the iron on the acid. A sample of hydrogen sulphide of better purity can be obtained if antimony(III) sulphide, (stibnite) SbjSj, is warmed with concentrated hydrochloric acid ... [Pg.282]

Hydrolysis of Potassium Ethyl Sulphate. Dissolve about i g. of the crystals in about 4 ml. of cold distilled water, and divide the solution into two portions, a) To one portion, add barium chloride solution. If pure potassium ethyl sulphate were used, no precipitate should now form, as barium ethyl sulphate is soluble in water. Actually however, almost all samples of potassium ethyl sulphate contain traces of potassium hydrogen sulphate formed by slight hydrolysis of the ethyl compound during the evaporation of its solution, and barium chloride almost invariably gives a faint precipitate of barium sulphate. b) To the second portion, add 2-3 drops of concentrated hydrochloric acid, and boil the mixture gently for about one minute. Cool, add distilled water if necessary until the solution has its former volume, and then add barium chloride as before. A markedly heavier precipitate of barium sulphate separates. The hydrolysis of the potassium ethyl sulphate is hastened considerably by the presence of the free acid Caustic alkalis have a similar, but not quite so rapid an effect. [Pg.79]

To prepare a sample of the hydrochloride, add 0-5 ml. of the base to 10 ml, of dilute hydrochloric acid in an evaporating basin and evaporate to dryness, preferably in a vacuum desiccator. Recrystallise the dry residue from petroleum (b.p. 60-80°). The hydrochloride separates as white crystals, m.p. 90°. [Pg.226]

Absolute diethyl ether. The chief impurities in commercial ether (sp. gr. 0- 720) are water, ethyl alcohol, and, in samples which have been exposed to the air and light for some time, ethyl peroxide. The presence of peroxides may be detected either by the liberation of iodine (brown colouration or blue colouration with starch solution) when a small sample is shaken with an equal volume of 2 per cent, potassium iodide solution and a few drops of dilute hydrochloric acid, or by carrying out the perchromio acid test of inorganic analysis with potassium dichromate solution acidified with dilute sulphuric acid. The peroxides may be removed by shaking with a concentrated solution of a ferrous salt, say, 6-10 g. of ferrous salt (s 10-20 ml. of the prepared concentrated solution) to 1 litre of ether. The concentrated solution of ferrous salt is prepared either from 60 g. of crystallised ferrous sulphate, 6 ml. of concentrated sulphuric acid and 110 ml. of water or from 100 g. of crystallised ferrous chloride, 42 ml. of concentrated hydiochloric acid and 85 ml. of water. Peroxides may also be removed by shaking with an aqueous solution of sodium sulphite (for the removal with stannous chloride, see Section VI,12). [Pg.163]

Method 2. Place a 3 0 g. sample of the mixture of amines in a flask, add 6g. (4-5 ml.) of benzenesulphonyl chloride (or 6 g. of p-toluenesulphonyl chloride) and 100 ml. of a 5 per cent, solution of sodium hydroxide. Stopper the flask and shake vigorously until the odour of the acid chloride has disappeared open the flask occasionally to release the pressure developed by the heat of the reaction. AUow the mixture to cool, and dissolve any insoluble material in 60-75 ml. of ether. If a solid insoluble in both the aqueous and ether layer appears at this point (it is probably the sparingly soluble salt of a primary amine, e.g., a long chain compound of the type CjH5(CH2) NHj), add 25 ml. of water and shake if it does not dissolve, filter it off. Separate the ether and aqueous layers. The ether layer will contain the unchanged tertiary amine and the sulphonamide of the secondary amine. Acidify the alkaline aqueous layer with dilute hydrochloric acid, filter off the sulphonamide of the primary amine, and recrystaUise it from dilute alcohol. Extract the ether layer with sufficient 5 per cent, hydrochloric acid to remove all the tertiary amine present. Evaporate the ether to obtain the sulphonamide of the secondary amine recrystaUise it from alcohol or dilute alcohol. FinaUy, render the hydrochloric acid extract alkaline by the addition of dilute sodium hydroxide solution, and isolate the tertiary amine. [Pg.651]

Analyses of alloys or ores for hafnium by plasma emission atomic absorption spectroscopy, optical emission spectroscopy (qv), mass spectrometry (qv), x-ray spectroscopy (see X-ray technology), and neutron activation are possible without prior separation of hafnium (19). Alternatively, the combined hafnium and zirconium content can be separated from the sample by fusing the sample with sodium hydroxide, separating silica if present, and precipitating with mandelic acid from a dilute hydrochloric acid solution (20). The precipitate is ignited to oxide which is analy2ed by x-ray or emission spectroscopy to determine the relative proportion of each oxide. [Pg.443]

Titrations with dibutylamine [111-92-2] can also be used to determine the NCO content of isocyanates and prepolymers. Generally, an excess of amine in a suitable solvent such as chlorobenzene [108-90-7] is added to the sample. The resulting solution is allowed to react and the unreacted amine is back- titrated with dilute hydrochloric acid. For low NCO content levels, a colorimetric method is often used. The isocyanate-containing species is titrated with amine and the unreacted amine is deterrnined using malachite green [569-64-2]. [Pg.457]

Many analytical methods depend on the conversion of the tellurium in the sample to teUurous acid, H2Te02. Should teUurous acid precipitate on dilution, it can be redissolved with hydrochloric acid. Although tellurium is not as readily volatile as selenium, precautions should be taken to prevent the volatilisation of tellurium when halogen or hydrohaUde media are used during sample decomposition. [Pg.388]

The determination of tin in metals containing over 75 wt % tin (eg, ingot tin) requites a special procedure (17). A 5-g sample is dissolved in hydrochloric acid, reduced with nickel, and cooled in CO2. A calculated weight of pure potassium iodate (dried at 100°C) and an excess of potassium iodide (1 3) are dissolved in water and added to the reduced solution to oxidize 96—98 wt % of the stannous chloride present. The reaction is completed by titration with 0.1 Af KIO —KI solution to a blue color using starch as the indicator. [Pg.60]

When heated with pyrocatechol [720-80-9] copper powder, and alcohoHc sodium hydroxide, carbon tetrachloride gives a blue color that changes to red on addition of hydrochloric acid. This color reaction is not produced by chloroform. Quantitative analysis of carbon tetrachloride may be done by first decomposing the sample free of organic and inorganic chlorides, heating in a sealed tube with alcohoHc potash, and subsequently determining the potassium chloride formed as the silver haHde. The Zeiss interference refractometer has been used to determine the concentration of carbon tetrachloride vapor in air (36). [Pg.532]

The sodium carbonate content may be deterrnined on the same sample after a slight excess of silver nitrate has been added. An excess of barium chloride solution is added and, after the barium carbonate has setded, it is filtered, washed, and decomposed by boiling with an excess of standard hydrochloric acid. The excess of acid is then titrated with standard sodium hydroxide solution, using methyl red as indicator, and the sodium carbonate content is calculated. [Pg.384]

Procedure To an aliquot of the sample solution containing 12.5 - 305 p.g of platinum(IV) were added 5 ml of hydrochloric acid - sodium acetate buffer of pH 2.1, 1 ml of O.IM Cu(II) sulphate solution, and 3.0 ml of 0.5% propericiazine solution. The solution was diluted to 25 ml with distilled water, mixed thoroughly, and the absorbance measured at 520 nm against a reagent blank solution after 10 min. The platinum concentration of the sample solution was determined using a standar d calibration curve. [Pg.117]

The possibility of preconcentration of selenium (IV) by coprecipitation with iron (III) hydroxide and lanthanum (III) hydroxide with subsequent determination by flame atomic absorption spectroscopy has been investigated also. The effect of nature and concentration of collector and interfering ions on precision accuracy and reproducibility of analytical signal A has been studied. Application of FefOH) as copreconcentrant leads to small relative error (less than 5%). S, is 0.1-0.2 for 5-100 p.g Se in the sample. Concentration factor is 6. The effect of concentration of hydrochloric acid on precision and accuracy of AAS determination of Se has been studied. The best results were obtained with HCl (1 1). [Pg.293]

Corrosion products and deposits. All sulfate reducers produce metal sulfides as corrosion products. Sulfide usually lines pits or is entrapped in material just above the pit surface. When freshly corroded surfaces are exposed to hydrochloric acid, the rotten-egg odor of hydrogen sulfide is easily detected. Rapid, spontaneous decomposition of metal sulfides occurs after sample removal, as water vapor in the air adsorbs onto metal surfaces and reacts with the metal sulfide. The metal sulfides are slowly converted to hydrogen sulfide gas, eventually removing all traces of sulfide (Fig. 6.11). Therefore, only freshly corroded surfaces contain appreciable sulfide. More sensitive spot tests using sodium azide are often successful at detecting metal sulfides at very low concentrations on surfaces. [Pg.134]

C. i-Melhyllhiol-yphthalamidapropane-2,2,-dicarboxylic Acid. —A solution of 25 g. (0.066 mole) of the above ester in 30 cc. of 95 per cent alcohol is heated on the steam bath in a 200-cc. round-bottomed flask, and 70 cc. of 5 A sodium hydroxide is added. The cloudy liquid is heated until a sample gives a clear solution on dilution with water this occurs after about two hours. The solution is then chilled to 0 and cautiously neutralized to Congo red with 0.2 N hydrochloric acid, whereupon 75 cc. of 5 A hydrochloric acid is slowly added, the temperature being maintained at 0°. The acid separates as colorless crystals. This separation is completed by the slow addition of 60 cc. of concentrated hydrochloric acid (sp. gr. 1.19). The product is filtered by suction and v ashed free of salt with small quantities of ice-cold water. After drying in vacuo, the yield amounts to 21.5-22 g. (95.5-98 per cent of the theoretical amount) of a product melting at 141-143°. [Pg.59]

Hydroxycinchoninic acid of this purity is adequate for decarboxylation. A sample recrystallized from dimethylform-amide or SiV hydrochloric acid decomposes at 224° when observed as described before. [Pg.58]

Phosphatidylcholine Apply phospholipase C solution as a band, dry, apply sample solution to enzyme band, stop reaction with hydrochloric acid vapor. sn-l,2-Digly-cerides are produced. [43]... [Pg.64]

Other possibilities are the reduction of nitro groups by applying the sample solutions to adsorbent layers containing zinc dust and then exposing to hydrochloric acid vapors [110] 3,5-Dinitrobenzoates and 2,4-dinitrophenylhydrazones can also be reduced in the same way on tin-containing silica gel phases [111] Cellulose layers are also suitable for such reactions [112] Seiler and Rothweiler have described a method of trans-salting the alkali metal sulfates to alkali metal acetates [113]... [Pg.77]

A total of 3 g (0.13 moles) of sodium hydride is added to a solution consisting of 10 g of 17 -hydroxy-5a-androstan-3-one (36 mmoles) in 200 ml of benzene and 10 ml of ethyl formate. The reaction mixture is allowed to stand under nitrogen for 3 days followed by dropwise addition of 10 ml of methanol to decompose the excess of sodium hydride. The solution is then diluted with 300 ml water and the layers are separated. The basic aqueous solution is extracted with ether to remove neutral material. The aqueous layer is acidified with 80 ml of 3 A hydrochloric acid and the hydroxymethylene steroid is extracted with benzene and ether. The combined organic extracts are washed with water and saturated sodium chloride solution and then dried over magnesium sulfate and concentrated. The residue, a reddish-yellow oil, crystallized from 10 ml of ether to yield 9.12 g (83%) of 17 -hydroxy-2-hydroxymethylene-5a-androstan-3-one mp 162-162.5°. Recrystallization from chloroform-ether gives an analytical sample mp 165-165.5° [a]o 53° (ethanol) 2 ° 252 mjj. (g 11,500), 307 m u (e 5,800). [Pg.95]


See other pages where Hydrochloric acid sampling is mentioned: [Pg.415]    [Pg.381]    [Pg.415]    [Pg.381]    [Pg.211]    [Pg.568]    [Pg.979]    [Pg.1065]    [Pg.1130]    [Pg.175]    [Pg.449]    [Pg.107]    [Pg.11]    [Pg.33]    [Pg.62]    [Pg.71]    [Pg.400]    [Pg.50]    [Pg.211]    [Pg.67]    [Pg.366]    [Pg.411]    [Pg.422]    [Pg.1130]    [Pg.216]    [Pg.224]    [Pg.954]    [Pg.315]    [Pg.43]    [Pg.163]   
See also in sourсe #XX -- [ Pg.181 , Pg.182 , Pg.183 , Pg.184 , Pg.185 ]




SEARCH



Acids hydrochloric acid

Hydrochloric

Hydrochloric acid

© 2024 chempedia.info