Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons, hydrocarbon aldehydes

Almost insoluble in cold water. Higher alcohols (including benzyl alcohol), higher phenols (e.g., naphthols), metaformaldehyde, paraldehyde, aromatic aldehydes, higher ketones (including acetophenone), aromatic acids, most esters, ethers, oxamide and domatic amides, sulphonamides, aromatic imides, aromatic nitriles, aromatic acid anhydrides, aromatic acid chlorides, sulphonyl chlorides, starch, aromatic amines, anilides, tyrosine, cystine, nitrocompounds, uric acid, halogeno-hydrocarbons, hydrocarbons. [Pg.404]

It is convenient to consider the indiflferent or neutral oxygen derivatives of the hydrocarbons—(a) aldehydes and kelones, (b) esters and anhydrides, (c) alcohols and ethers—together. All of these, with the exception of the water-soluble members of low molecular weight, are soluble only in concentrated sulphuric acid, i.e., fall into Solubility Group V. The above classes of compounds must be tested for in the order in which they are listed, otherwise erroneous conclusions may be drawn from the reactions for functional groups about to be described. [Pg.1060]

Our experience to this point has been that C—H bonds are not very acidic Com pared with most hydrocarbons however aldehydes and ketones have relatively acidic protons on their a carbon atoms pA s for enolate formation from simple aldehydes and ketones are m the 16 to 20 range... [Pg.764]

Chemical Properties. A combination of excellent chemical and mechanical properties at elevated temperatures result in high performance service in the chemical processing industry. Teflon PEA resins have been exposed to a variety of organic and inorganic compounds commonly encountered in chemical service (26). They are not attacked by inorganic acids, bases, halogens, metal salt solutions, organic acids, and anhydrides. Aromatic and ahphatic hydrocarbons, alcohols, aldehydes, ketones, ethers, amines, esters, chlorinated compounds, and other polymer solvents have Httle effect. However, like other perfluorinated polymers,they react with alkah metals and elemental fluorine. [Pg.375]

Esters are most commonly prepared by the reaction of a carboxyHc acid and an alcohol with the elimination of water. Esters are also formed by a number of other reactions utilizing acid anhydrides, acid chlorides, amides, nitriles, unsaturated hydrocarbons, ethers, aldehydes, ketones, alcohols, and esters (via ester interchange). Detailed reviews of esterification are given in References 1—9. [Pg.374]

Kiln operations rotary kiln Particulates (dust), CO, SO, NO, hydrocarbons, aldehydes, ketones Electrostatic precipitators, acoustic horns and baghouses, scrubber... [Pg.2175]

Chemistry of rosin. All three types of rosin consist primarily of C20 mono-carboxylic diterpene resin acids, the most common of which have the molecular formula C20H20O2. In addition, rosins contain small amounts of neutral and other acidic components (e.g. fatty acids in tall oil rosin). The neutral components of rosins are diterpene alcohols, hydrocarbons and aldehydes, and their contents generally vary between 5 and 15 wt%. [Pg.599]

Formylation of aromatic hydrocarbons to aldehydes with dichloromethyl ether 47, 2... [Pg.130]

In the Fischer-Tropsch process, carbon monoxide reacts with hydrogen in the presence of a solid catalyst, with the formation of a mixture of hydrocarbons. The composition of the product varies considerably with the catalyst and the operating conditions. The mixture may include (in addition to hydrocarbons) alcohols, aldehydes, ketones, and acids. [Pg.76]

Pyrolyses of formates, oxalates and mellitates yield CO and C02 (H2, H20 etc.) as the predominant volatile products and metal or oxide as residue. It is sometimes possible to predict the initial compositions from thermodynamic considerations [94], though secondary reactions, perhaps catalyzed by the solids present, may result in a final product mixture that is very different. The complex mixtures of products (hydrocarbons, aldehydes, ketones, acids and acid anhydrides) given [1109] by reactants containing larger organic groupings makes the collection of meaningful kinetic data more difficult, and this is one reason why there are relatively few rate studies available for the decompositions of these substances. [Pg.229]

Catalytic hydrogenation of nitriles may result in several products primary, secondary, and tertiary amines imines hydrocarbons aldehydes amides and... [Pg.71]

Oxidative damage to membrane polyunsaturated fatty acids leads to the formation of numerous lipid peroxidation products, some of which can be measured as index of oxidative stress, including hydrocarbons, aldehydes, alcohols, ketones, and short carboxylic acids. [Pg.275]

Many volatile organic compounds (hydrocarbons, alcohols, aldehydes, acids, esters, ketones, amines, etc.) have been identified in marine systems [ 156,157]. These volatile materials may have an important role in the cycling of organic... [Pg.503]

Catalysis by Transition Metal Ions and Complexes in Liquid-Phase Oxidation of Hydrocarbons and Aldehydes by Dioxygen... [Pg.10]

Enthalpies of Reactions of Different Peroxyl Radicals with Hydrocarbons and Aldehydes (See Tables 6.3 and 8.1 for BDE Values)... [Pg.336]

The kinetic scheme of the oxidation of ketones RCH2C(0)R1 is similar to that for hydrocarbons, aldehydes, etc. It includes the presence of initiator I and a high concentration of the dioxygen (>10-5 mol L 1). Oxidation proceeds by the following elementary steps [4,62] ... [Pg.338]

As alkylaromatic hydrocarbon (toluene, p-xylene, etc.) is oxidized, aldehydes appear radicals and peracids formed from them play an important role. First, aldehydes react rapidly with the Co3+ and Mn3+ ions, which intensifies oxidation. Second, acylperoxyl radicals formed from aldehydes are very reactive and rapidly react with the initial hydrocarbon. Third, aldehydes form an adduct with primary hydroperoxide, which decomposes to form aldehyde and acid. [Pg.410]

Compounds of transition metals (Mn, Cu, Fe, Co, Ce) are well known as catalysts for the oxidation of hydrocarbons and aldehydes (see Chapter 10). They accelerate oxidation by destroying hydroperoxides and initiating the formation of free radicals. Salts and complexes containing transition metals in a lower-valence state react rapidly with peroxyl radicals and so when these compounds are added to a hydrocarbon prior to its oxidation an induction period arises [48]. Chain termination occurs stoichiometrically (f 1) and stops when the metal passes to a higher-valence state due to oxidation. On the addition of an initiator or hydroperoxide, the induction period disappears. [Pg.586]

Anthracene and 2,6-dinitrophenol terminate chains in oxidizing PP reacting with alkyl as well as with peroxyl radicals [50]. It is important to note that the last two inhibitors retard the liquid phase oxidation of hydrocarbons and aldehydes only by the reaction with peroxyl... [Pg.669]

Wacker (1) A general process for oxidizing aliphatic hydrocarbons to aldehydes or ketones by the use of oxygen, catalyzed by an aqueous solution of mixed palladium and copper chlorides. Ethylene is thus oxidized to acetaldehyde. If the reaction is conducted in acetic acid, the product is vinyl acetate. The process can be operated with the catalyst in solution, or with the catalyst deposited on a support such as activated caibon. There has been a considerable amount of fundamental research on the reaction mechanism, which is believed to proceed by alternate oxidation and reduction of the palladium ... [Pg.286]

Hydrocarbons, alcohols, aldehydes, ketones, carboxylic adds, quinones, esters, lactones, phenolics, steroids, alkaloids, cyanogenic glycosides, sulfides, peptides, proteins Arachnida... [Pg.15]

This technique has been applied to the determination of aromatic hydrocarbons, alcohols, aldehydes, ketones, chloroaliphatic compounds, haloaromatic compounds, acrylonitrile, acetonitrile, mixtures of organic compounds and tetrahydrothiophene in soils, chloroaliphatic and haloaromatic compounds and organotin compounds in non-saline sediments, and organotin compounds in saline sediments. [Pg.79]

For more volatile compounds in soils, such as aromatic hydrocarbons, alcohols, aldehydes, ketones, chloroaliphatic hydrocarbons, haloaromatic hydrocarbons, acetonitrile, acrylonitrile and mixtures of organic compounds a combination of gas chromatography with purge and trap analysis is extremely useful. Pyrolysis gas chromatography has also found several applications, heteroaromatic hydrocarbons, polyaromatic hydrocarbons, polymers and haloaromatic compounds and this technique has been coupled with mass spectrometry, (aliphatic and aromatic hydrocarbons and mixtures of organic compounds). [Pg.95]

On the basis of their findings they contend that the effect of almost any compound -hydrocarbons, alcohols, aldehydes, acids, amines, nitro-compounds, H20, H2S, S02, NH3 - can be co-catalytic or inhibitory, according to its concentration [66]. They extend quite unnecessarily the concept of co-catalyst to cover any substance which enhances the DP, and they thereby confuse and debase the originally perfectly precise meaning of the term co-catalyst a substance the presence of which is essential for the functioning of the catalyst [22, 71]. It follows of course from this definition that evidence on co-catalytic activity can be obtained only from rate measurements, and never from studies of DP. [Pg.78]

Peroxides, per-acids. Note Numerous unsaturated hydrocarbons, aldehydes, ketones, ethers and some cyclic hydrocarbons (e.g. Dekalin) tend to form peroxides in the presence of air... [Pg.245]

In contrast to the other large cats, the urine of the cheetah, A. jubatus, is practically odorless to the human nose. An analysis of the organic material from cheetah urine showed that diglycerides, triglycerides, and free sterols are possibly present in the urine and that it contains some of the C2-C8 fatty acids [95], while aldehydes and ketones that are prominent in tiger and leopard urine [96] are absent from cheetah urine. A recent study [97] of the chemical composition of the urine of cheetah in their natural habitat and in captivity has shown that volatile hydrocarbons, aldehydes, saturated and unsaturated cyclic and acyclic ketones, carboxylic acids and short-chain ethers are compound classes represented in minute quantities by more than one member in the urine of this animal. Traces of 2-acetylfuran, acetaldehyde diethyl acetal, ethyl acetate, dimethyl sulfone, formanilide, and larger quantities of urea and elemental sulfur were also present in the urine of this animal. Sulfur was found in all the urine samples collected from male cheetah in captivity in South Africa and from wild cheetah in Namibia. Only one organosulfur compound, dimethyl disulfide, is present in the urine at such a low concentration that it is not detectable by humans [97]. [Pg.261]

Carboxylic acids, anhydrides, aromatic and aliphatic hydrocarbons, alcohols, aldehydes, ketones, esters, and chlorinated solvents have only a slight effect. [Pg.494]

The classes of major primary pollutants that are important in urban areas are listed in Table 2-1. The pollutants most responsible for oxidant formation in the air are the nitrogen oxides, hydrocarbons, aldehydes, and carbon monoxide. The internal-combustion engine is a major source of emission of these primary pollutants, although many stationary sources. [Pg.14]

Alkanes n-butene, isopentane, isooctane Cydoalkanes t dohezane, methylcyclopentane Olefins (sometimes called alkenes ) ethylene, propylene, butene Cydoolefins ( clohezene Alkynes acetylene Aromatics toluene, i ene CHLORINATED HYDROCARBONS ALDEHYDES, RCHO formaldehyde, acetaldehyde KETONES, RCX R " acetone, methylethylketone NITRIC OXIDE, NO ... [Pg.15]

Although the above reactions generate a few fi radicals, most of the oxidation of nitric oxide to nitrogen dioxide is carried out by the alkyl-peroxy, RO, and hydroperoxy radicals that are formed in later reactions involving reactive hydrocarbons, aldehydes, or even carbon monoxide. One such example is shown in Figure 2-7. There is still considerable uncertainty as to the mechanism of these secondary reactions. The modeling studies should be consulted for details. ... [Pg.26]


See other pages where Hydrocarbons, hydrocarbon aldehydes is mentioned: [Pg.110]    [Pg.427]    [Pg.1082]    [Pg.505]    [Pg.171]    [Pg.177]    [Pg.40]    [Pg.155]    [Pg.276]    [Pg.392]    [Pg.384]    [Pg.1351]    [Pg.15]    [Pg.114]    [Pg.19]    [Pg.26]   


SEARCH



Aldehydes (s. a. Aldehyde hydrocarbons (methyl

Aldehydes (s. a. Formyl hydrocarbons (methyl groups

Aldehydes hydrocarbons

Aldehydes hydrocarbons

Aldehydes to hydrocarbons

Formylation of aromatic hydrocarbons to aldehydes with dichloromethyl

Hydrocarbon derivatives aldehydes

Hydrocarbons aldehydes and ketones

Hydrocarbons from aldehydes

Hydrocarbons, hydrocarbon aldehydes (from methyl

Hydrocarbons, hydrocarbon aldehydes (methyl

Reaction Rate Constants of OH, O3, NO3 with Hydrocarbons and Aldehydes

Reduction of Aldehydes and Ketones to Hydrocarbons

© 2024 chempedia.info