Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heavy fluid catalytic cracking

Deep C t lytic Crocking. This process is a variation of fluid catalytic cracking. It uses heavy petroleum fractions, such as heavy vacuum gas oil, to produce propylene- and butylene-rich gaseous products and an aromatic-rich Hquid product. The Hquid product contains predorninantiy ben2ene, toluene, and xylene (see BTX processing). This process is being developed by SINOPEC in China (42,73). SINOPEC is currentiy converting one of its fluid catalytic units into a demonstration unit with a capacity of 60,000 t/yr of vacuum gas oil feedstock. [Pg.368]

Another approach used to reduce the harmful effects of heavy metals in petroleum residues is metal passivation. In this process an oil-soluble treating agent containing antimony is used that deposits on the catalyst surface in competition with contaminant metals, thus reducing the catalytic activity of these metals in promoting coke and gas formation. Metal passivation is especially important in fluid catalytic cracking (FCC) processes. Additives that improve FCC processes were found to increase catalyst life and improve the yield and quality of products. ... [Pg.47]

A mixture of monolauryl phosphate sodium salt and triethylamine in H20 was treated with glycidol at 80°C for 8 h to give 98% lauryl 2,3-dihydro-xypropyl phosphate sodium salt [304]. Dyeing aids for polyester fibers exist of triethanolamine salts of ethoxylated phenol-styrene adduct phosphate esters [294], Fatty ethanolamide phosphate surfactant are obtained from the reaction of fatty alcohols and fatty ethanolamides with phosphorus pentoxide and neutralization of the product [295]. A double bond in the alkyl group of phosphoric acid esters alter the properties of the molecule. Diethylethanolamine salt of oleyl phosphate is effectively used as a dispersant for antimony oxide in a mixture of xylene-type solvent and water. The composition is useful as an additive for preventing functional deterioration of fluid catalytic cracking catalysts for heavy petroleum fractions. When it was allowed to stand at room temperature for 1 month it shows almost no precipitation [241]. [Pg.615]

The most important undesired metallic impurities are nickel and vanadium, present in porphyrinic structures that originate from plants and are predominantly found in the heavy residues. In addition, iron may be present due to corrosion in storage tanks. These metals deposit on catalysts and give rise to enhanced carbon deposition (nickel in particular). Vanadium has a deleterious effect on the lattice structure of zeolites used in fluid catalytic cracking. A host of other elements may also be present. Hydrodemetallization is strictly speaking not a catalytic process, because the metallic elements remain in the form of sulfides on the catalyst. Decomposition of the porphyrinic structures is a relatively rapid reaction and as a result it occurs mainly in the front end of the catalyst bed, and at the outside of the catalyst particles. [Pg.355]

Figure 4 Catalytic cracking (fluid catalytic cracking). Heavy fraction gas oils are cracked (broken down) into lower molecular weight fractions in the presence of finely powdered catalyst, handled as a fluid. (From Ref. 5.)... Figure 4 Catalytic cracking (fluid catalytic cracking). Heavy fraction gas oils are cracked (broken down) into lower molecular weight fractions in the presence of finely powdered catalyst, handled as a fluid. (From Ref. 5.)...
Gas oils Utilized as straight-run distillate after desulfurization. Lighter atmospheric and vacuum gas oils are often hydrocracked or catalytically cracked to produce gasoline, jet, and diesel fuel fractions heavy vacuum gas oils can be used to produce lubestocks or as fluid catalytic cracking (FCC) feedstock... [Pg.7]

Table 7 shows the yield distribution of the C4 isomers from different feedstocks with specific processing schemes. The largest yield of butylenes comes from the refineries processing middle distillates and from olefins plants cracking naphtha. The refinery product contains 35 to 65% butanes olefins plants, 3 to 5%. Catalyst type and operating severity determine the selectivity of the C4 isomer distribution (41) in the refinery process stream. Processes that parallel fluid catalytic cracking to produce butylenes and propylene from heavy cmde oil fractions are under development (42). [Pg.366]

The ET-II process is a thermal cracking process for the production of distillates and cracked residuum for use as a metallurgical coke and is designed to accommodate feedstocks such as heavy oils, atmospheric residua, and vacuum residua (Kuwahara, 1987). The distillate (referred to in the process as cracked oil) is suitable as a feedstock to hydrocracker and fluid catalytic cracking. The basic technology of the ET-II process is derived from that of the original Eureka process. [Pg.321]

The volatile products from the soaking drum enter the fractionator where the distillates are fractionated into desired product oil streams, including a heavy gas oil fraction. The cracked gas product is compressed and used as refinery fuel gas after sweetening. The cracked oil product after hydrotreating is used as fluid catalytic cracking or hydrocracker feedstock. The residuum is suitable for use as boiler fuel, road asphalt, binder for the coking industry, and as a feedstock for partial oxidation. [Pg.326]

In the process, a residuum is desulfurized and the nonvolatile fraction from the hydrodesulfurizer is charged to the residuum fluid catalytic cracking unit. The reaction system is an external vertical riser terminating in a closed cyclone system. Dispersion steam in amounts higher than that used for gas oils is used to assist in the vaporization of any volatile constituents of heavy feedstocks. [Pg.330]

The R2R process is a fluid catalytic cracking process for conversion of heavy feedstocks. [Pg.332]

In the S W fluid catalytic cracking process (Figure 8-15), the heavy feedstock is injected into a stabilized, upward flowing catalyst stream whereupon the feedstock-steam-catalyst mixture travels up the riser and is separated by a high efficiency inertial separator. The product vapor goes overhead to the main fractionator (Long, 1987). [Pg.335]

Hydrotreating processes have two definite roles (1) desulfurization to supply low-sulfur fuel oils and (2) pretreatment of feed residua for residuum fluid catalytic cracking processes. The main goal is to remove sulfur, metal, and asphaltene contents from residua and other heavy feedstocks to a desired level. [Pg.355]

Fluid catalytic cracking (FCC) of heavy oil fractions is a well-known process in oil refineries. Numerous books (e.g., 1—3) and publications about the different aspects of this subject are available. This chapter is concerned with the modeling of the transfer line or riser reactor of an FCC unit (FCCU) or of a pilot plant. The riser reactor in FCCUs is a vertical pipe about 1 m in diameter and 10-30 m in height. The hot catalyst coming from the regenerator at about 710 ° C first comes in contact with steam and is fluidized. Then, at a height of some meters above, the catalyst is mixed with the preheated feedstock at about 300 ° C. [Pg.170]

J.L. Mauleon and J.B. Sigaud "Characterization and selection of heavy feeds for upgrading through fluid catalytic cracking process" in the 12th world Petroleum Congress, Houston 1987,... [Pg.347]

In present-day refineries, the fluid catalytic cracking (FCC) unit has become the major gasoline-producing unit. The FCC s major purpose is to upgrade heavy fractions, that is, gas oil from the atmospheric and vacuum distillation columns and delayed coker, into light products. Atmospheric gas oil has a boiling range of between 650-725°F.9... [Pg.813]

Catalytic cracking is the process of upgrading gas oil or even residual oil (heavy oil) to produce gasoline, distillates, light olefines, etc. Commercialized processes include fluid catalytic cracking (FCC), residual oil catalytic cracking (RFCC), and catalytic pyrolysis, etc. [Pg.41]


See other pages where Heavy fluid catalytic cracking is mentioned: [Pg.175]    [Pg.366]    [Pg.363]    [Pg.203]    [Pg.234]    [Pg.337]    [Pg.70]    [Pg.605]    [Pg.93]    [Pg.352]    [Pg.104]    [Pg.12]    [Pg.99]    [Pg.97]    [Pg.77]    [Pg.201]    [Pg.10]    [Pg.38]    [Pg.448]    [Pg.548]    [Pg.182]    [Pg.366]    [Pg.407]    [Pg.234]    [Pg.28]    [Pg.203]    [Pg.286]    [Pg.134]    [Pg.173]    [Pg.280]   
See also in sourсe #XX -- [ Pg.620 , Pg.621 , Pg.622 ]




SEARCH



Catalytic fluid

Cracking fluid

Fluid catalytic cracking

© 2024 chempedia.info