Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat removal polymerization

Isothermal polymerizations are carried out in thin films so that heat removal is efficient. In a typical isothermal polymerization, aqueous acrylamide is sparged with nitrogen for 1 h at 25°C and EDTA (C2QH2 N20g) is then added to complex the copper inhibitor. Polymerization can then be initiated as above with the ammonium persulfate—sodium bisulfite redox couple. The batch temperature is allowed to rise slowly to 40°C and is then cooled to maintain the temperature at 40°C. The polymerization is complete after several hours, at which time additional sodium bisulfite is added to reduce residual acrylamide. [Pg.142]

A schematic of a continuous bulk SAN polymerization process is shown in Figure 4 (90). The monomers are continuously fed into a screw reactor where copolymerization is carried out at 150°C to 73% conversion in 55 min. Heat of polymerization is removed through cooling of both the screw and the barrel walls. The polymeric melt is removed and fed to the devolatilizer to remove unreacted monomers under reduced pressure (4 kPa or 30 mm Hg) and high temperature (220°C). The final product is claimed to contain less than 0.7% volatiles. Two devolatilizers in series are found to yield a better quaUty product as well as better operational control (91,92). [Pg.195]

Suspension Polymerization. In this process the organic reaction mass is dispersed in the form of droplets 0.01—1 mm in diameter in a continuous aqueous phase. Each droplet is a tiny bulk reactor. Heat is readily transferred from the droplets to the water, which has a large heat capacity and a low viscosity, faciUtating heat removal through a cooling jacket. [Pg.437]

In the recipes shown in Table 2, the amount of water can vary widely, depending on the available heat-transfer capacity of the reactor and the rate of polymerization. Each of the monomers has a heat of polymerization of about 75 kj/ mol (18 kcal/mol), so removing the heat of polymerization to control temperature is often the limiting factor on rate of polymerization. [Pg.519]

Polymerization in aqueous solution of acrylamide can also be fulfilled in thin layers (up to 20 mm) applied on a steel plate or a traveling steel band. Polymerization is initiated by persulfates, redox system, UV or y radiation. Polymerization proceeds in isothermal conditions as the heat of polymerization is dissipated in the environment and, additionally, absorbed by the steel carrier. Nonadhesion of the polymer to the carrier is ensured by the addition of glycerol to isopropyl alcohol or by precoating the steel band with a film based on fluor-containing polymers. This makes polymerization possible at a high concentration of the monomer (20-45%) and in a wider process temperature range. This film of polyacrylamide is removed from the band, crushed, dried, and packed. [Pg.66]

To accelerate the polymerization process, some water-soluble salts of heavy metals (Fe, Co, Ni, Pb) are added to the reaction system (0.01-1% with respect to the monomer mass). These additions facilitate the reaction heat removal and allow the reaction to be carried out at lower temperatures. To reduce the coagulate formation and deposits of polymers on the reactor walls, the additions of water-soluble salts (borates, phosphates, and silicates of alkali metals) are introduced into the reaction mixture. The residual monomer content in the emulsion can be decreased by hydrogenizing the double bond in the presence of catalysts (Raney Ni, and salts of Ru, Co, Fe, Pd, Pt, Ir, Ro, and Co on alumina). The same purpose can be achieved by adding amidase to the emulsion. [Pg.68]

During polymerization, when Initiator Is Introduced continuously following a predetermined feed schedule, or when heat removal Is completely controllable so that temperature can be programmed with a predetermined temperature policy, we may regard functions [mo(t ], or T(t), as reaction parameters. A common special case of T(t) Is the Isothernral mode, T = constant. In the present analysis, however, we treat only uncontrolled, batch polymerizations In which [mo(t)] and T(t) are reaction variables, subject to variation In accordance with the conservation laws (balances). Thus, only their Initial (feed) values, Imo] andTo, are true parameters. [Pg.17]

Heat transfer can, of course, be increased by increasing the agitator speed. An increase in speed by 10 will increase the relative heat transfer by 10. The relative power input, however, will increase by 10In viscous systems, therefore, one rapidly reaches the speed of maximum net heat removal beyond which the power input into the batch increases faster than the rate of heat removal out of the batch. In polymerization systems, the practical optimum will be significantly below this speed. The relative decrease in heat transfer coefficient for anchor and turbine agitated systems is shown in Fig. 9 as a function of conversion in polystyrene this was calculated from the previous viscosity relationships. Note that the relative heat transfer coefficient falls off less rapidly with the anchor than with the turbine. The relative heat transfer coefficient falls off very little for the anchor at low Reynolds numbers however, this means a relatively small decrease in ah already low heat transfer coefficient in the laminar region. In the regions where a turbine is effective,... [Pg.81]

The advantage of suspension processes over mass processes is the excellent temperature control that can be obtained through the suspending medium, water. This allows for rapid heat removal and shorter polymerization times. It reduces or eliminates hot spots or heat-kicks characteristic of mass reactors. It also allows the polymerization to be driven very close to completion so that no devolatilization step is normally required. [Pg.87]

The other entries in Table 13.2 show that heat removal is not a problem for most ring-opening and condensation polymerizations. Polycaprolactam (also called Nylon 6) is an addition polymer, but with rather similar bond energies for the monomer and the polymer. The reaction exotherm is small enough that large parts are made by essentially adiabatic reaction in a mold. An equilibrium between monomer and polymer does exist for polycaprolactam, but it occurs at commercially acceptable molecular weights. [Pg.468]

Continuous-flow stirred tank reactors are widely used for free-radical polymerizations. They have two main advantages the solvent or monomer can be boiled to remove the heat of polymerization, and fairly narrow molecular weight and copolymer composition distributions can be achieved. Stirred tanks or... [Pg.492]

Polymerization High viscosity may cause problems with heat removal from the reaction zone, reaction often uncontrollable... [Pg.206]

Low density polyethylene is made at high pressures in one of two types of continuous reactor. Autoclave reactors are large stirred pressure vessels, which rely on chilled incoming monomer to remove the heat of polymerization. Tubular reactors consist of long tubes with diameters of approximately 2.5 cm and lengths of up to 600 m. Tubular reactors have a very high surface-to-volume ratio, which permits external cooling to remove the heat of polymerization. [Pg.289]

There is a potential thermal runaway upon the combined occurrence of two or more of the above listed factors. For example, an accumulation of reactants in combination with insufficient heat removal leads to a runaway of the desired reaction. The resulting temperature increase (now uncontrolled) may lead to an explosive decomposition if other exothermic reactions, such as decompositions or polymerizations, occur within the range of the temperature increase. [Pg.91]

The emulsion process, however, competed strongly in the initial phase with the continuous mass polymerization process, one reason being the easier heat removal but the main reason being that high molecular weights were obtained in a simple manner. The process first appeared in the patent literature (19, 20) in 1927 and was further improved by H. Fikentscher (21), finding wide application in the whole field of polymer chemistry. [Pg.268]

Polymerization of methyl methacrylate to Plexiglas is done in the bulk process. High pressure polymerization of ethylene is done this way also. But other addition polymerizations frequently become too exothermic and without adequate heat removal system, the reaction tends to run away from optimum conditions. [Pg.329]

Monomer and initiator must be soluble in the liquid and the solvent must have the desired chain-transfer characteristics, boiling point (above the temperature necessary to carry out the polymerization and low enough to allow for ready removal if the polymer is recovered by solvent evaporation). The presence of the solvent assists in heat removal and control (as it also does for suspension and emulsion polymerization systems). Polymer yield per reaction volume is lower than for bulk reactions. Also, solvent recovery and removal (from the polymer) is necessary. Many free radical and ionic polymerizations are carried out utilizing solution polymerization including water-soluble polymers prepared in aqueous solution (namely poly(acrylic acid), polyacrylamide, and poly(A-vinylpyrrolidinone). Polystyrene, poly(methyl methacrylate), poly(vinyl chloride), and polybutadiene are prepared from organic solution polymerizations. [Pg.186]


See other pages where Heat removal polymerization is mentioned: [Pg.397]    [Pg.157]    [Pg.204]    [Pg.76]    [Pg.97]    [Pg.400]    [Pg.384]    [Pg.386]    [Pg.399]    [Pg.436]    [Pg.438]    [Pg.521]    [Pg.521]    [Pg.464]    [Pg.464]    [Pg.501]    [Pg.225]    [Pg.42]    [Pg.68]    [Pg.718]    [Pg.328]    [Pg.87]    [Pg.76]    [Pg.79]    [Pg.89]    [Pg.90]    [Pg.109]    [Pg.495]    [Pg.505]    [Pg.309]    [Pg.334]    [Pg.102]    [Pg.26]   


SEARCH



Ethylene polymerization, heat removal

Heat removal

Heat removal, polymerization reactions

© 2024 chempedia.info