Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transfer heat capacity

Reactor heat carrier. Also as pointed out in Sec. 2.6, if adiabatic operation is not possible and it is not possible to control temperature by direct heat transfer, then an inert material can be introduced to the reactor to increase its heat capacity flow rate (i.e., product of mass flow rate and specific heat capacity) and to reduce... [Pg.100]

Stream Supply temp. T, rc) Target temp. Tr rC) AH (MW) Heat capacity flow rate CP (WN C- ) Heat transfer coefficient h(MW... [Pg.220]

Some physical properties, such as heat capacity and thermal conductivity, are difficult to measure accurately at higher temperatures and error as great as 20% are common. For critical appHcations, consult the heat-transfer fluid manufacturer concerning methods that were employed for these measurements. [Pg.508]

Solution Polymerization. In this process an inert solvent is added to the reaction mass. The solvent adds its heat capacity and reduces the viscosity, faciUtating convective heat transfer. The solvent can also be refluxed to remove heat. On the other hand, the solvent wastes reactor space and reduces both rate and molecular weight as compared to bulk polymerisation. Additional technology is needed to separate the polymer product and to recover and store the solvent. Both batch and continuous processes are used. [Pg.437]

Suspension Polymerization. In this process the organic reaction mass is dispersed in the form of droplets 0.01—1 mm in diameter in a continuous aqueous phase. Each droplet is a tiny bulk reactor. Heat is readily transferred from the droplets to the water, which has a large heat capacity and a low viscosity, faciUtating heat removal through a cooling jacket. [Pg.437]

Amplitude of controlled variable Output amplitude limits Cross sectional area of valve Cross sectional area of tank Controller output bias Bottoms flow rate Limit on control Controlled variable Concentration of A Discharge coefficient Inlet concentration Limit on control move Specific heat of liquid Integration constant Heat capacity of reactants Valve flow coefficient Distillate flow rate Limit on output Decoupler transfer function Error... [Pg.717]

Time constants. Where there is a capacity and a throughput, the measurement device will exhibit a time constant. For example, any temperature measurement device has a thermal capacity (mass times heat capacity) and a heat flow term (heat transfer coefficient and area). Both the temperature measurement device and its associated thermowell will exhibit behavior typical of time constants. [Pg.758]

As described above, quantum restrictions limit tire contribution of tire free electrons in metals to the heat capacity to a vety small effect. These same electrons dominate the thermal conduction of metals acting as efficient energy transfer media in metallic materials. The contribution of free electrons to thermal transport is very closely related to their role in the transport of electric current tlrrough a metal, and this major effect is described through the Wiedemann-Franz ratio which, in the Lorenz modification, states that... [Pg.167]

For first trial on tubeside assume equal heat is transferred in each pass w ith constant fluid heat capacity. [Pg.29]

Given a number Nh of process hot streams (to be cooled) and a number Nq of process cold streams (to be heated), it is desired to synthesize a cost effective network of heat exchangers which can transfer heat from the hot streams to the cold streams. Given also are the heat capacity (flowrate x specific heat) of each process hot stream, FCp u, its supply (inlet) temperature, and target (outlet) temper-... [Pg.217]

In the case of a temperature probe, the capacity is a heat capacity C == me, where m is the mass and c the material heat capacity, and the resistance is a thermal resistance R = l/(hA), where h is the heat transfer coefficient and A is the sensor surface area. Thus the time constant of a temperature probe is T = mc/ hA). Note that the time constant depends not only on the probe, but also on the environment in which the probe is located. According to the same principle, the time constant, for example, of the flow cell of a gas analyzer is r = Vwhere V is the volume of the cell and the sample flow rate. [Pg.1134]

For heat exchangers in true counter-current (fluids flowing in opposite directions inside or outside a tube) or true co-current (fluids flowing inside and outside of a tube, parallel to each other in direction), with essentially constant heat capacities of the respective fluids and constant heat transfer coefficients, the log mean temperature difference may be appropriately applied, see Figure 10-33. ... [Pg.76]

LMTD = log mean temperature difference, °F M = mass flow rate, Ib/hr Ntu = number of heat transfer units, dimensionless N = number tubes/row in direction of air flow n = number tubes/row, per ft of exchanger width, 1 /ft Q = total exchanger heat load (duty), Btu/hr R = = heat capacity ratio, dimensionless... [Pg.267]

Convective heat transmission occurs within a fluid, and between a fluid and a surface, by virtue of relative movement of the fluid particles (that is, by mass transfer). Heat exchange between fluid particles in mixing and between fluid particles and a surface is by conduction. The overall rate of heat transfer in convection is, however, also dependent on the capacity of the fluid for energy storage and on its resistance to flow in mixing. The fluid properties which characterize convective heat transfer are thus thermal conductivity, specific heat capacity and dynamic viscosity. [Pg.346]

Convection requires a fluid, either liquid or gaseous, which is free to move between the hot and cold bodies. This mode of heat transfer is very complex and depends firstly on whether the flow of fluid is natural , i.e. caused by thermal currents set up in the fluid as it expands, or forced by fans or pumps. Other parameters are the density, specific heat capacity and viscosity of the fluid and the shape of the interacting surface. [Pg.7]

Providing that the flow rates are steady, the heat transfer coefficients do notvary and the specific heat capacities are constant throughout the working range, the average temperature difference over the length of the curve is given hy ... [Pg.10]


See other pages where Transfer heat capacity is mentioned: [Pg.1905]    [Pg.460]    [Pg.57]    [Pg.342]    [Pg.49]    [Pg.482]    [Pg.147]    [Pg.29]    [Pg.315]    [Pg.517]    [Pg.341]    [Pg.140]    [Pg.474]    [Pg.582]    [Pg.749]    [Pg.1048]    [Pg.1059]    [Pg.1191]    [Pg.1401]    [Pg.1466]    [Pg.1510]    [Pg.2055]    [Pg.2104]    [Pg.2398]    [Pg.159]    [Pg.297]    [Pg.284]    [Pg.1163]    [Pg.41]    [Pg.223]    [Pg.694]    [Pg.157]    [Pg.64]    [Pg.1084]    [Pg.1058]   
See also in sourсe #XX -- [ Pg.101 , Pg.301 ]




SEARCH



Heat capacity transfer coefficient

Heat capacity transfer rate

Heat transfer capacity, reduction

© 2024 chempedia.info