Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxide, reaction with alkyl halides

The target is now cyclopentanol. Alcohols can be prepared from alkyl halides by reaction with hydroxide ion as the nucleophile. Again, however, the combination of a strongly basic nucleophile and a secondary alkyl halide will result in an unacceptable amount of elimination. A better plan is to treat bromocyclopentane with acetate ion in an aprotic solvent such as DM SO. followed by cleavage of the ester to cyclopentanol ... [Pg.386]

The reactions of HO and 02 - with alkyl halides exhibit the same general pattern (Scheme 16), with second-order kinetics and inversion of configuration. Radicals are not detected in the reactions with hydroxide ion, which indicates that there probably is not a discrete SET step, but rather that the transfer of the entering and leaving groups is synchronous with a single-electron shift. [Pg.3491]

Primary halides, such as 1-bromopentane (15) usually give very poor yields of an alkene when treated with KOH in ethanol. Based on experimental results with primary alkyl halides, assume that primary alkyl halides do not give an alkene under normal E2 conditions. The activation energy required to generate a transition state such as 16 (for an E2 reaction of 15) is so high that the E2 reaction is quite slow relative to another reaction such as substitution. It is not impossible, just slow. Remember that hydroxide and ethoxide are nucleophiles as well as bases, and one can imagine a facile Sn2 reaction at the primary carbon, which is faster than the E2 reaction. If any reaction occurs when 15 reacts with hydroxide in ethanol, it will likely be the 8 2 product, 1-pentanol via reaction with hydroxide, or 1-ethoxypentane via reaction with ethoxide. If any alkene is formed, it is usually a very minor product. [Pg.591]

Which alkyl halide in each pair is more reactive in an E2 reaction with hydroxide ion ... [Pg.450]

Figure 3 shows alkylation of 4-nitrobenzylpyridine (NBP) with alkyl halide (RX) followed by reaction with hydroxide ion to form a violet product. The reaction, which is used for the detection of alkylating agents, is a good example of the advantage of using a microemulsion as a reaction medium [6,7]. In the conventional procedure a nonaqueous solvent is employed to dissolve the oil-soluble NBP and the RX. This solution is then treated with... [Pg.330]

Which of these two opposite stereochemical possibilities operates was determined in experiments with optically active alkyl halides In one such experiment Hughes and Ingold determined that the reaction of 2 bromooctane with hydroxide ion gave 2 octanol having a configuration opposite that of the starting alkyl halide... [Pg.331]

We saw in the preceding chapter that the carbon-ha]ogen bond in an alkyl halide is polar and that the carbon atom is electron-poor. Thus, alkyl halides are electrophiles, and much of their chemistry involves polar reactions with nucleophiles and bases. Alkyl halides do one of two things when they react with a nucleophile/base, such as hydroxide ion either they undergo substitution of the X group by the nucleophile, or they undergo elimination of HX to yield an alkene. [Pg.359]

The E2 reaction (for elimination, bimolecular) occurs when an alkyl halide is treated with a strong base, such as hydroxide ion or alkoxide ion (RO-). It is the most commonly occurring pathway for elimination and can be formulated as shown in Figure 11.17. [Pg.386]

Substitution and elimination reactions are almost always in competition with each other. In order to predict the products of a reaction, you must determine which mechanism(s) win the competition. In some cases, there is one clear winner. For example, consider a case in which a tertiary alkyl halide is treated with a strong base, such as hydroxide ... [Pg.234]

Sulphoxides can be used as phase transfer catalysts, for example, a-phosphoryl sulphoxides (Scheme 24) have been used as phase transfer catalysts in the two-phase alkylation of phenylacetonitrile or phenylacetone with alkyl halides and aqueous sodium hydroxide. However, they are considered to be inefficient catalysts for simple displacement reactions. ... [Pg.573]

Notes on the preparation of secondary alkylarylamines. The preparation of -propyl-, ijopropyl- and -butyl-anilines can be conveniently carried out by heating the alkyl bromide with an excess (2-5-4mols) of aniline for 6-12 hours. The tendency for the alkyl halide to yield the corresponding tertiary amine is thus repressed and the product consists almost entirely of the secondary amine and the excess of primary amine combined with the hydrogen bromide liberated in the reaction. The separation of the primary and secondary amines is easily accomplished by the addition of an excess of per cent, zinc chloride solution aniline and its homologues form sparingly soluble additive compounds of the type B ZnCl whereas the alkylanilines do not react with sine chloride in the presence of water. The excess of primary amine can be readily recovered by decomposing the zincichloride with sodium hydroxide solution followed by steam distillation or solvent extraction. The yield of secondary amine is about 70 per cent, of the theoretical. [Pg.571]

A thio-substituted, quaternary ammonium salt can be synthesized by the Michael addition of an alkyl thiol to acrylamide in the presence of benzyl trimethyl ammonium hydroxide as a catalyst [793-795]. The reaction leads to the crystallization of the adducts in essentially quantitative yield. Reduction of the amides by lithium aluminum hydride in tetrahydrofuran solution produces the desired amines, which are converted to desired halide by reaction of the methyl iodide with the amines. The inhibitor is useful in controlling corrosion such as that caused by CO2 and H2S. [Pg.92]

Extractive alkylation is used to derivatize acids, phenols, alcohols or amides in aqueous solution [435,441,448,502]. The pH of the aqueous phase is adjusted to ensure complete ionization of the acidic substance which is then extracted as an ion pair with a tetraalkylammonium hydroxide into a suitable immiscible organic solvent. In the poorly solvating organic medium, the substrate anion possesses high reactivity and the nucleophilic displacement reaction with an alkyl halide occurs under favorable conditions. [Pg.945]

Figure 8.17 Reaction of an alkyl halide with hydroxide ion. (a) A primary halide reacts by an SN2 mechanism, causing Walden inversion about the central, chiral carbon, (b) A tertiary halide reacts by an SN1 mechanism (the rate-determining step of which is unimolecular dissociation, minimizing the extent of Walden inversion and maximizing the extent of racemization). Secondary alcohols often react with both Sn 1 and SN2 mechanistic pathways proceeding concurrently... Figure 8.17 Reaction of an alkyl halide with hydroxide ion. (a) A primary halide reacts by an SN2 mechanism, causing Walden inversion about the central, chiral carbon, (b) A tertiary halide reacts by an SN1 mechanism (the rate-determining step of which is unimolecular dissociation, minimizing the extent of Walden inversion and maximizing the extent of racemization). Secondary alcohols often react with both Sn 1 and SN2 mechanistic pathways proceeding concurrently...
It can be assumed that the azoles are deprotonated by the interfacial exchange mechanism, but it is noteworthy that it has been suggested that the rate of alkylation of indole under liquiddiquid two-phase conditions decreases with an increase in the concentration of the sodium hydroxide [8]. The choice of catalyst appears to have little effect on the reaction rate or on the overall yields of alkylated azole. Benzyltriethylammonium chloride, Aliquat, and tetra-n-butylammonium hydrogen sulphate or bromide have all been used at ca. 1-10% molar equivalents (relative to the concentration of the azole) for alkylation reactions, but N-arylation of indole with an activated aryl halide requires a stoichiometric amount of the catalyst [8]. [Pg.196]

A second interfacial exchange reaction of the o-acylcobalt complex with hydroxide ion leads to the production of the alkanecarboxylate anion, which migrates into the aqueous phase, leaving the cobalt tetracarbonyl anion in the organic phase for subsequent reaction (Scheme 8.2). Optimum yields of the carboxylic acids are obtained with ca. 40 1 ratio of the alkyl halide to dicobalt octacarbonyl. Co(Ph,P)2Cl2 can also be used and has the advantage that the cobalt can be recycled easily [5]. [Pg.370]

The general feature of alkylation reactions at a carbon atom is that they can be achieved under sonication using solid bases even in apolar solvents. The advantage is that side reactions are generally minimised. Deprotonation occurs readily on a benzylic position in the presence of aqueous sodium hydroxide, as shown with indene (Eq. 3.21) [117]. A quantitative yield of the alkylated product can be obtained using sonication in the presence of a PTC. It was suggested that alkylation of cyclopentadiene or indene by secondary or tertiary alkyl halides in the presence of potassium hydroxide and Ali-quat occurred via a SET process [118]. [Pg.113]

Alkyl halides undergo Sn2 reactions with a variety of nucleophiles, e.g. metal hydroxides (NaOH or KOH), metal alkoxides (NaOR or KOR) or metal cyanides (NaCN or KCN), to produce alcohols, ethers or nitriles, respectively. They react with metal amides (NaNH2) or NH3, 1° amines and 2° amines to give 1°, 2° or 3° amines, respectively. Alkyl halides react with metal acetylides (R C=CNa), metal azides (NaN3) and metal carboxylate (R C02Na) to produce internal alkynes, azides and esters, respectively. Most of these transformations are limited to primary alkyl halides (see Section 5.5.2). Higher alkyl halides tend to react via elimination. [Pg.73]

We have already learnt that alkyl halides react with alcohols and metal hydroxide (NaOH or KOH) to give ethers and alcohols, respectively. Depending on the alkyl halides and the reaction conditions, both S l and Sn2 reactions can occur. Alkyl halides undergo a variety of transformation through Sn2 reactions with a wide range of nucleophiles (alkoxides, cyanides, acetylides, alkynides, amides and carboxylates) to produce other functional groups. [Pg.238]

Etherification. The reaction of alkyl halides with sugar polyols in the presence of aqueous alkaline reagents generally results in partial etherification. Thus, a tetraallyl ether is formed on reaction of D-mannitol with allyl bromide in the presence of 20% sodium hydroxide at 75°C (124). Treatment of this partial ether with metallic sodium to form an alcoholate, followed by reaction with additional allyl bromide, leads to hexaallyl D-mannitol (125). Complete methylation of D-mannitol occurs, however, by the action of dimethyl sulfate and sodium hydroxide (126). A mixture of tetra- and pentabutyloxymethyl ethers of D-mannitol results from the action of butyl chloromethyl ether (127). Completely substituted trimethylsilyl derivatives of polyols, distillable in vacuo, are prepared by interaction with trimethylchlorosilane in the presence of pyridine (128). Hexavinylmannitol is obtained from D-mannitol and acetylene at 25.31 MPa (250 atm) and 160°C (129). [Pg.51]

The crux of organic mechanistic stereochemistry may be the Walden inversion, the inversion of stereochemistry about a four-coordinate carbon atom by nucleophilic attack of, for example, a hydroxide ion on an alkyl halide. Many reactions of inorganic molecules follow the same mechanism. In contrast, the dissociative mechanism of tertiary halides to form tertiary carbocatanion intermediates is essentially unknown among the nonmetallic elements silicon, germanium, phosphorus, etc. The reason for this is the generally lower stability of species with coordination numbers of less than 4, together with an increased stability of five-coordinate intermediates. This difference is attributable to the presence of d orbitals in the heavier elements (Chapter 18). [Pg.669]

The reaction of many alkyl halides with hydroxide ion is overall second order, being first order in alkyl halide and first order in hydroxide. In aqueous solution, the rate of reaction of CH3Br with OH to give CH3OH and Br has a rate constant of... [Pg.795]


See other pages where Hydroxide, reaction with alkyl halides is mentioned: [Pg.728]    [Pg.214]    [Pg.109]    [Pg.394]    [Pg.728]    [Pg.58]    [Pg.861]    [Pg.728]    [Pg.728]    [Pg.339]    [Pg.656]    [Pg.689]    [Pg.366]    [Pg.548]    [Pg.104]    [Pg.648]    [Pg.571]    [Pg.37]    [Pg.656]    [Pg.689]    [Pg.496]   
See also in sourсe #XX -- [ Pg.463 ]




SEARCH



ALKYL HYDROXIDE

Alkyl halides reactions

Alkyl halides, alkylation reactions

Alkyl reaction with

Alkylation with alkyl halides

Hydroxide, potassium reaction with alkyl halides

Hydroxides reactions

Hydroxides reactions with

Reaction with alkyl halides

With alkyl halides

© 2024 chempedia.info