Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl halides tertiary

Alcohols and alkyl halides are classified as primary secondary or tertiary according to the degree of substitution of the carbon that bears the functional group (Section 2 13) Thus primary alcohols and primary alkyl halides are compounds of the type RCH2G (where G is the functional group) secondary alcohols and secondary alkyl halides are compounds of the type R2CHG and tertiary alcohols and tertiary alkyl halides are com pounds of the type R3CG... [Pg.146]

Tertiary alkyl halide fastest rate of El elimination... [Pg.219]

Having just learned that tertiary alkyl halides are practically inert to substitution by the Sn2 mechanism because of steric hindrance we might wonder whether they undergo nucleophilic substitution at all We 11 see m this section that they do but by a mecha nism different from 8 2... [Pg.339]

Tertiary alkyl halides are so sterically hindered to nucleophilic attack that the pres ence of any anionic Lewis base favors elimination Usually substitution predominates over elimination m tertiary alkyl halides only when anionic Lewis bases are absent In the solvolysis of the tertiary bromide 2 bromo 2 methylbutane for example the ratio of substitution to elimination is 64 36 m pure ethanol but falls to 1 99 m the presence of 2 M sodium ethoxide... [Pg.349]

The few studies that have been carried out with optically active tertiary alcohols indicate that almost complete racemization accompanies the preparation of tertiary alkyl halides by this method... [Pg.355]

Unbranched primary alcohols and tertiary alcohols tend to react with hydrogen halides without rearrangement The alkyloxonmm ions from primary alcohols react rap idly with bromide ion for example m an Sn2 process Tertiary alcohols give tertiary alkyl halides because tertiary carbocations are stable and show little tendency to rearrange... [Pg.355]

Section 8 13 When nucleophilic substitution is used for synthesis the competition between substitution and elimination must be favorable However the normal reaction of a secondary alkyl halide with a base as strong or stronger than hydroxide is elimination (E2) Substitution by the Sn2 mechanism predominates only when the base is weaker than hydroxide or the alkyl halide is primary Elimination predominates when tertiary alkyl halides react with any anion... [Pg.355]

Rate IS governed by stability of car bocation that is formed in loniza tion step Tertiary alkyl halides can react only by the SnI mechanism they never react by the Sn2 mecha nism (Section 8 9) Rate IS governed by steric effects (crowding in transition state) Methyl and primary alkyl halides can react only by the Sn2 mecha nism they never react by the SnI mechanism (Section 8 6)... [Pg.356]

The acidity of acetylene and terminal alkynes permits them to be converted to their conjugate bases on treatment with sodium amide These anions are good nucleophiles and react with methyl and primary alkyl halides to form carbon-carbon bonds Secondary and tertiary alkyl halides cannot be used because they yield only elimination products under these conditions... [Pg.383]

Methyl and primary alkyl halides especially iodides work best Elimination becomes a problem with secondary and tertiary alkyl halides... [Pg.603]

Secondary and tertiary alkyl halides are not suitable because they react with alkox ide bases by E2 elimination rather than by 8 2 substitution Whether the alkoxide base IS primary secondary or tertiary is much less important than the nature of the alkyl halide Thus benzyl isopropyl ether is prepared m high yield from benzyl chloride a pri mary chloride that is incapable of undergoing elimination and sodium isopropoxide... [Pg.672]

The reaction is of the 8 2 type and works best with primary and secondary alkyl halides Elimination is the only reaction observed with tertiary alkyl halides Aryl and vinyl halides do not react Dimethyl sulfoxide is the preferred solvent for this reaction but alcohols and water-alcohol mixtures have also been used... [Pg.808]

Because fhe new carbon-carbon bond is formed by an 8 2 lype reaction fhe alkyl halide musl nol be slerically hindered Melhyl and primary alkyl halides work besl secondary alkyl halides give lower yields Tertiary alkyl halides fail reacting only by elimination nol subslilulion... [Pg.894]

The alkyl halide must be one that reacts readily by an 8 2 mechanism Thus methyl and primary alkyl halides are the most effective alkylating agents Elimination competes with substitution when secondary alkyl halides are used and is the only reac tion observed with tertiary alkyl halides... [Pg.1008]

Isobutyl bromide (l-bromo-2-methylpropane) [78-77-3] M 137.0, b 91.2 , d 1.260, n 1.437. Partially hydrolysed to remove any tertiary alkyl halide, then fractionally distd, washed with cone H2SO4, water and aqueous K2CO3, then redistd from dry K2CO3. [Dunbar and Hammett J Am Chem Soc 72 109 7950.1... [Pg.271]

Nucleophilic substitution by cyanide ion (Sections 8.1, 8.13) Cyanide ion is a good nucleophile and reacts with alkyl halides to give nitriles. The reaction is of the S m2 type and is limited to primary and secondary alkyl halides. Tertiary alkyl halides undergo elimination aryl and vinyl halides do not react. [Pg.867]

Secondary or tertiary alkyl halides are much less reactive. For example an alkyl dichloride with a primary and a secondary chloride substituent reacts selectively by exchange of the primary chloride. The reactivity with respect to the Finkelstein reaction is thus opposite to the reactivity for the hydrolysis of alkyl chlorides. For the Finkelstein reaction on secondary and tertiary substrates Lewis acids may be used," e.g. ZnCla, FeCls or MesAl. [Pg.113]

The reaction works well with primary alkyl halides, especially with allylic and benzylic halides, as well as other alkyl derivatives with good leaving groups. Secondary alkyl halides give poor yields. Tertiary alkyl halides react under the usual reaction conditions by elimination of HX only. Nitriles from tertiary alkyl halides can however be obtained by reaction with trimethylsilyl cyanide 4 ... [Pg.185]

With secondary and tertiary alkyl halides an Ea-elimination is often observed as a side-reaction. As the alkyl halide reactant an iodide is most often employed, since alkyl iodides are more reactive than the corresponding bromides or chlorides. With phenoxides as nucleophiles a C-alkylation can take place as a competing reaction. The ratio of 0-alkylation versus C-alkylation strongly depends on the solvent used. For example reaction of benzylbromide 4 with /3-naphth-oxide 5 in yV,A-dimethylformamide (DMF) as solvent yields almost exclusively the /3-naphthyl benzylether 6, while the reaction in water as solvent leads via intermediate 7 to formation of the C-benzylated product—l-benzyl-2-naphthol 8—as the major product ... [Pg.292]

One way of determining carbocation stabilities is to measure the amount of energy required to form the carbocation by dissociation of the corresponding alkyl halide, R-X - R+ + X . As shown in Figure 6.10, tertiary alkyl halides dissociate to give carbocations more easily than secondary or primary ones. As a result, trisubstituted carbocations are more stable than disubstituted ones, which are more stable than monosubstituted ones. The data in Figure 6.10 are taken from measurements made in the gas phase, but a similar stability order is found for carbocations in solution. The dissociation enthalpies are much lower in solution because polar solvents can stabilize the ions, but the order of carbocation stability remains the same. [Pg.195]

The alkylation reaction is limited to the use of primary alkyl bromides and alkyl iodides because acetylide ions are sufficiently strong bases to cause dehydrohalogenation instead of substitution when they react with secondary and tertiary alkyl halides. For example, reaction of bromocyclohexane with propyne anion yields the elimination product cyclohexene rather than the substitution product 1-propynylcyclohexane. [Pg.273]

Tertiary alkyl halides, JR3CX, undergo spontaneous dissociation to yield a carbocation, K3C+, plus halide ion. Which do you think reacts faster, (CH3)3CBt or H2C=CHC(CH3)2Br Explain. [Pg.358]

Jn light of the fact that tertiary alkyl halides undergo spontaneous dissociation to yield a carbocation plus halide ion (Problem 10.40) propose a mechanism for the following reaction ... [Pg.358]

From this and nearly a dozen other series of similar reactions, workers concluded that the nucleophilic substitution reaction of a primary or secondary alkyl halide or tosylate always proceeds with inversion of configuration. (Tertiary alkyl halides and tosylates, as we ll see shortly, give different stereochemical results and react by a different mechanism.)... [Pg.362]

Unimolecular reaction (Section 11.4) A reaction that occurs by spontaneous transformation of the starting male-rial without the intervention of other reactants. For example, the dissociation of a tertiary alkyl halide in the S l reaction is a unimolecular process. [Pg.1252]

It is possible to take advantage of the differing characteristics of the periphery and the interior to promote chemical reactions. For example, a dendrimer having a non-polar aliphatic periphery with highly polar inner branches can be used to catalyse unimolecular elimination reactions in tertiary alkyl halides in a non-polar aliphatic solvent. This works because the alkyl halide has some polarity, so become relatively concentrated within the polar branches of the dendrimer. This polar medium favours the formation of polar transition states and intermediates, and allows some free alkene to be formed. This, being nonpolar, is expelled from the polar region, and moves out of the dendrimer and into the non-polar solvent. This is a highly efficient process, and the elimination reaction can be driven to completion with only 0.01 % by mass of a dendrimer in the reaction mixture in the presence of an auxiliary base such as potassium carbonate. [Pg.144]

Primary and secondary but not tertiary alkyl halides are easily converted to Bunte salts (RSSOj ) by treatment with thiosulfate ion. ° Bunte salts can be hydrolyzed with acids to give the corresponding thiols or converted to disulfides, tetrasulfides,... [Pg.498]

Substitution and elimination reactions are almost always in competition with each other. In order to predict the products of a reaction, you must determine which mechanism(s) win the competition. In some cases, there is one clear winner. For example, consider a case in which a tertiary alkyl halide is treated with a strong base, such as hydroxide ... [Pg.234]

This is not a new reaction. This is just an Sn2 reaction. We are simply using the alkoxide ion (ethoxide in this case) to function as the attacking nucleophile. But notice the net result of this reaction we have combined an alcohol and an alkyl halide to form an ether. This process has a special name. It is called the Williamson Ether Synthesis. This process relies on an Sn2 reaction as the main step, and therefore, we must be careful to obey the restrictions of Sn2 reactions. It is best to use a primary alkyl halide. Secondary alkyl halides cannot be used because elimination will predominate over substitution (as seen in Sections 10.9), and tertiary alkyl halides certainly cannot be used. [Pg.330]


See other pages where Alkyl halides tertiary is mentioned: [Pg.115]    [Pg.146]    [Pg.867]    [Pg.89]    [Pg.146]    [Pg.116]    [Pg.538]    [Pg.388]    [Pg.183]   
See also in sourсe #XX -- [ Pg.234 ]

See also in sourсe #XX -- [ Pg.231 ]

See also in sourсe #XX -- [ Pg.16 , Pg.170 , Pg.178 , Pg.250 , Pg.272 , Pg.444 , Pg.476 , Pg.484 ]

See also in sourсe #XX -- [ Pg.369 ]

See also in sourсe #XX -- [ Pg.284 ]




SEARCH



Alkyl halides—continued tertiary

Tertiary alkyl coupling reactions with alkenyl halides

Tertiary alkyl halides synthesis

Tertiary halides

Tertiary halides, alkylation with

© 2024 chempedia.info