Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gas-phase reaction studies

Chlorinated and brominated materials are burned or thermally treated in a variety of combustion sources including hazardous and municipal waste incinerators, industrial processes, backyard trash burning, and accidental fires. Chlorinated materials are used in a wide range of applications and brominated compounds are fire retardants used in many devices including electronic circuits. Although there has been some research on the reactions of CHCs and BHCs in the past 20 years, too little is known about their reactions considering the magnitude of the environmental impact. Elementary reaction studies of gas-phase reactions of Cj and C2, CHCs, and BHCs are needed to understand their most fundamental reaction properties. Reactions of the chlorinated and brominated benzenes and phenols are important intermediate steps in the formation of PCDD/F. Recent kinetic models indicate that the gas-phase reactions may be quite important and elementary gas-phase reaction studies have been overlooked by researchers. [Pg.112]

There are many different designs available for combined high-pressure reaction studies and ultrahigh-vacuum surface science investigations. Transfer rods that move the sample from the environmental cells to the UHV chamber and reaction cells that permit liquid-phase or gas-phase reaction studies have been described in the literature. [Pg.464]

In 1993 I developed a simple model system to calculate the energetics and properties expected for such a Al-O-Al bridging species (18). Previous quantum mechanical calculations addressing this question have given contradictory results since the systems studied were not charge balanced. For example one gas-phase reaction studied was ... [Pg.167]

Before we explore the answers to these questions we must examine the experimental landscape carefully. First of all, many gas-phase reactions studied with the aid of thermodynamics are of industrial importance. Secondly the reactants do not spontaneously change into products, and the system does not come to equilibrium within a reasonable time. In fact, in some systems after the reactants are brought together there will be no perceptible change over the course of years. To facilitate the reaction a specific catalyst may be needed, development of which often requires enormous cost and effort. To further complicate matters, the products may continue to react to give a variety of other products, depending on the catalyst and environmental variables. In brief, there is no simple way to study a particular reaction equilibrium unencumbered by a host of other processes going on simultaneously. [Pg.486]

Gas-phase reactions play a fundamental role in nature, for example atmospheric chemistry [1, 2, 3, 4 and 5] and interstellar chemistry [6], as well as in many teclmical processes, for example combustion and exliaust fiime cleansing [7, 8 and 9], Apart from such practical aspects the study of gas-phase reactions has provided the basis for our understanding of chemical reaction mechanisms on a microscopic level. The typically small particle densities in the gas phase mean that reactions occur in well defined elementary steps, usually not involving more than three particles. [Pg.759]

The field of gas phase reaction dynamics has been extensively reviewed elsewhere [1, 2 and 3] in considerably greater detail than is appropriate for this chapter. Here, we begin by simnnarizing the key theoretical concepts and experimental teclmiques used in reaction dynamics, followed by a case study , the reaction F + H2 HF + H, which serves as an illustrative example of these ideas. [Pg.870]

One of the most important teclmiques for the study of gas-phase reactions is flash photolysis [8, ]. A reaction is initiated by absorption of an intense light pulse, originally generated from flash lamps (duration a=lp.s). Nowadays these have frequently been replaced by pulsed laser sources, with the shortest pulses of the order of a few femtoseconds [22, 64]. [Pg.2125]

Nickel sulfate also is made by the reaction of black nickel oxide and hot dilute sulfuric acid, or of dilute sulfuric acid and nickel carbonate. The reaction of nickel oxide and sulfuric acid has been studied and a reaction induction temperature of 49°C deterrnined (39). High purity nickel sulfate is made from the reaction of nickel carbonyl, sulfur dioxide, and oxygen in the gas phase at 100°C (40). Another method for the continuous manufacture of nickel sulfate is the gas-phase reaction of nickel carbonyl and nitric acid, recovering the soHd product in sulfuric acid, and continuously removing the soHd nickel sulfate from the acid mixture (41). In this last method, nickel carbonyl and sulfuric acid are fed into a closed-loop reactor. Nickel sulfate and carbon monoxide are produced the CO is thus recycled to form nickel carbonyl. [Pg.10]

Tubular reactors have been the main tools to study continuous flow processes for vapor or gas-phase reactions. These are also used for reaction in tv o flowing phases over a solid catalyst. When the catalyst is in a fixed bed, the contact between the liquid on the outside surface of the particulate is uncertain. For slurry-type solid catalyst the residence time of the catalyst or the quantity in the reactor volume can be undefined. [Pg.31]

From diese various estimates, die total batch cycle time t(, is used in batch reactor design to determine die productivity of die reactor. Batch reactors are used in operations dial are small and when multiproducts are required. Pilot plant trials for sales samples in a new market development are carried out in batch reactors. Use of batch reactors can be seen in pharmaceutical, fine chemicals, biochemical, and dye industries. This is because multi-product, changeable demand often requues a single unit to be used in various production campaigns. However, batch reactors are seldom employed on an industrial scale for gas phase reactions. This is due to die limited quantity produced, aldiough batch reactors can be readily employed for kinetic studies of gas phase reactions. Figure 5-4 illustrates die performance equations for batch reactors. [Pg.269]

Pertiaps the most obvious experiment is to compare the rate of a reaction in the presence of a solvent and in the absence of the solvent (i.e., in the gas phase). This has long been possible for reactions proceeding homolytically, in which little charge separation occurs in the transition state for such reactions the rates in the gas phase and in the solution phase are similar. Very recently it has become possible to examine polar reactions in the gas phase, and the outcome is greatly different, with the gas-phase reactivity being as much as 10 greater than the reactivity in polar solvents. This reduced reactivity in solvents is ascribed to inhibition by solvation in such reactions the role of the solvent clearly overwhelms the intrinsic reactivity of the reactants. Gas-phase kinetic studies are a powerful means for interpreting the reaction coordinate at a molecular level. [Pg.385]

Powling (P7) recently reported on the results of an extensive study of the combustion characteristics of ammonium perchlorate-based composite propellants. The nature of the chemical processes taking place at the solid-gas interface and the possibility of heat release in the condensed phase were considered. Although the evidence is that some heat release is likely to occur within the solid surface, Powling found that the combustion in all pressure regions appears to be dominated by gas-phase reactions. [Pg.49]

Williams (W2) has recently modified the analysis of Hart and McClure by considering in more detail the effect of diffusional processes on the gas-phase reaction zone. The results of his study show that the diffusional processes tend to stabilize the gas-phase combustion process, indicating that the postulated solid-phase reactions are probably the underlying cause of the instability. [Pg.54]

Explicit mechanisms attempt to include all nonmethane hydrocarbons believed present in the system with an explicit representation of their known chemical reactions. Atmospheric simulation experiments with controlled NMHC concentrations can be used to develop explicit mechanisms. Examples of these are Leone and Seinfeld (164), Hough (165) and Atkinson et al (169). Rate constants for homogeneous (gas-phase) reactions and photolytic processes are fairly well established for many NMHC. Most of the lower alkanes and alkenes have been extensively studied, and the reactions of the higher family members, although little studied, should be comparable to the lower members of the family. Terpenes and aromatic hydrocarbons, on the other hand, are still inadequately understood, in spite of considerable experimental effort. Parameterization of NMHC chemistry results when NMHC s known to be present in the atmosphere are not explicitly incorporated into the mechanism, but rather are assigned to augment the concentration of NMHC s of similar chemical nature which the... [Pg.90]

Hinshelwood and Green d Studied the homogeneous, gas-phase reaction ... [Pg.253]

Chemical vapor deposition (CVD) of carbon from propane is the main reaction in the fabrication of the C/C composites [1,2] and the C-SiC functionally graded material [3,4,5]. The carbon deposition rate from propane is high compared with those from other aliphatic hydrocarbons [4]. Propane is rapidly decomposed in the gas phase and various hydrocarbons are formed independently of the film growth in the CVD reactor. The propane concentration distribution is determined by the gas-phase kinetics. The gas-phase reaction model, in addition to the film growth reaction model, is required for the numerical simulation of the CVD reactor for designing and controlling purposes. Therefore, a compact gas-phase reaction model is preferred. The authors proposed the procedure to reduce an elementary reaction model consisting of hundreds of reactions to a compact model objectively [6]. In this study, the procedure is applied to propane pyrolysis for carbon CVD and a compact gas-phase reaction model is built by the proposed procedure and the kinetic parameters are determined from the experimental results. [Pg.217]

Similar findings were made by BASF in studies investigating an undisclosed gas-phase reaction in capillaries made of quartz, catalyst material and reactor-wall material [105]. The dimensions were chosen in such a way that they match the of surface-to-volume ratio of a fixed-bed reactor used previously for the same reaction. A quartz capillary shows no conversion, whereas reactor-wall material actually has a greater activity than the catalyst itself Hence BASF came to the, at first sight, surprising conclusion that in their production process it was the reactor wall, and not the catalyst, which catalyzes the reaction. The reactor wall was 70 times more active than the catalyst it needs a temperature increase of about 100 °C to have both at equal conversion. [Pg.320]


See other pages where Gas-phase reaction studies is mentioned: [Pg.153]    [Pg.168]    [Pg.546]    [Pg.1455]    [Pg.153]    [Pg.168]    [Pg.546]    [Pg.1455]    [Pg.759]    [Pg.2145]    [Pg.628]    [Pg.514]    [Pg.28]    [Pg.506]    [Pg.118]    [Pg.94]    [Pg.111]    [Pg.113]    [Pg.129]    [Pg.933]    [Pg.22]    [Pg.516]    [Pg.1097]    [Pg.244]    [Pg.270]    [Pg.11]    [Pg.280]    [Pg.11]    [Pg.2]    [Pg.117]    [Pg.225]    [Pg.339]    [Pg.339]    [Pg.682]    [Pg.516]    [Pg.208]    [Pg.562]   
See also in sourсe #XX -- [ Pg.464 ]




SEARCH



Gas phase reactions

Phase 1-4 studies

© 2024 chempedia.info