Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloride, vinyl, also

Uses. The a2obisnitriles have been used for bulk, solution, emulsion, and suspension polymeri2ation of all of the common vinyl monomers, including ethylene, styrene vinyl chloride, vinyl acetate, acrylonitrile, and methyl methacrylate. The polymeri2ations of unsaturated polyesters and copolymeri2ations of vinyl compounds also have been initiated by these compounds. [Pg.224]

Sintering has been used to produce a porous polytetrafluoroethylene (16). Cellulose sponges are the most familiar cellular polymers produced by the leaching process (123). Sodium sulfate crystals are dispersed in the viscose symp and subsequently leached out. Polyethylene (124) or poly(vinyl chloride) can also be produced in cellular form by the leaching process. The artificial leather-tike materials used for shoe uppers are rendered porous by extraction of salts (125) or by designing the polymers in such a way that they precipitate as a gel with many holes (126). [Pg.408]

Alternatives to the methyl chloride dkect process have been reviewed (31). Processes to make phenyl and ethyl siUcones have employed dkect-process chemistry. Phenyl chloride has been used in place of methyl chloride to make phenylchlorosilanes (15). In addition, phenylchlorosilanes are produced by the reaction of benzene, HSiCl, and BCl (17,31). EthylsiUcones have been made primarily in the CIS, where the dkect process is carried out with ethyl chloride in place of methyl chloride (32). Vinyl chloride can also be used in the dkect process to produce vinylchlorosilanes (31). Alternative methods for making vinylchlorosilanes include reaction of vinyl chloride with HSiCl or the platinum-catalyzed hydrosilylation of acetjdene with HSiCl. ... [Pg.43]

If the production of vinyl chloride could be reduced to a single step, such as dkect chlorine substitution for hydrogen in ethylene or oxychlorination/cracking of ethylene to vinyl chloride, a major improvement over the traditional balanced process would be realized. The Hterature is filled with a variety of catalysts and processes for single-step manufacture of vinyl chloride (136—138). None has been commercialized because of the high temperatures, corrosive environments, and insufficient reaction selectivities so far encountered. Substitution of lower cost ethane or methane for ethylene in the manufacture of vinyl chloride has also been investigated. The Lummus-Transcat process (139), for instance, proposes a molten oxychlorination catalyst at 450—500°C to react ethane with chlorine to make vinyl chloride dkecfly. However, ethane conversion and selectivity to vinyl chloride are too low (30% and less than 40%, respectively) to make this process competitive. Numerous other catalysts and processes have been patented as weU, but none has been commercialized owing to problems with temperature, corrosion, and/or product selectivity (140—144). Because of the potential payback, however, this is a very active area of research. [Pg.422]

Significant quantities of ethyl chloride are also produced as a by-product of the catalytic hydrochlorination over a copper chloride catalyst, of ethylene and hydrogen chloride to produce 1,2-dichloroethane, which is used as feedstock in the manufacture of vinyl choride (see Vinyl polymers). This ethyl chloride can be recovered for sale or it can be concentrated and catalyticaHy cracked back to ethylene and hydrogen chloride (25). As the market for ethyl chloride declines, recovery as an intermediate by-product of vinyl chloride manufacture may become a predominant method of manufacture of ethyl chloride. [Pg.2]

Nearly all of the benzyl chloride [100-44-7], henzal chloride [98-87-3], and hen zotrichl oride /P< -(97-i manufactured is converted to other chemical intermediates or products by reactions involving the chlorine substituents of the side chain. Each of the compounds has a single primary use that consumes a large portion of the compound produced. Benzyl chloride is utilized in the manufacture of benzyl butyl phthalate, a vinyl resin plasticizer benzal chloride is hydrolyzed to benzaldehyde hen zotrichl oride is converted to benzoyl chloride. Benzyl chloride is also hydrolyzed to benzyl alcohol, which is used in the photographic industry, in perfumes (as esters), and in peptide synthesis by conversion to benzyl chloroformate [501-53-1] (see Benzyl ALCOHOL AND p-PHENETHYL ALCOHOL CARBONIC AND CARBONOCm ORIDIC ESTERS). [Pg.58]

By copolymerising the vinylidene chloride with about 10-15% of vinyl chloride, processable polymers may be obtained which are used in the manufacture of filaments and films. These copolymers have been marketed by the Dow Company since 1940 under the trade name Saran. Vinylidene chloride-acrylonitrile copolymers for use as coatings of low moisture permeability are also marketed (Saran, Viclan). Vinylidene chloride-vinyl chloride copolymers in which the vinylidene chloride is the minor component (2-20%) were mentioned in Chapter 12. [Pg.466]

Vinylidene chloride-vinyl chloride polymers are also self-extinguishing and possess very good resistance to a wide range of chemicals, including acids and alkalis. They are dissolved by some cyclic ethers and ketones. [Pg.468]

In the UK vinyl chloride is also subject to an overriding annual maximum exposure limit of 3 ppm. [Pg.176]

Strohmeier and Hartmann [14] first reported in 1964 the photoinitiation of polymerization of ethyl acrylate by several transition metal carbonyls in the presence of CCI4. Vinyl chloride has also been polymerized in a similar manner [15,16] No detailed photoinitiation mechanisms were discussed, but it seems most likely that photoinitiation proceeds by the route shown in reaction Scheme (9). [Pg.245]

C06-0010. Vinyl chloride can also be formed by reacting ethylene with CI2, which produces... [Pg.387]

Vinyl chloride is also obtained from acetylene. [Pg.193]

P.Y.17 may be used for mass coloration and also to print PVC film. For these purposes, P.Y.17 is frequently prepared on a VC/VAc (vinyl chloride/vinyl acetate) mixed polymer basis. Good dispersibility in plastics makes these preparations suitable even for thin films. The dielectrical properties of P.Y.17 allow its application in PVC cable insulations. [Pg.250]

Photolytic. Irradiation of vinyl chloride in the presence of nitrogen dioxide for 160 min produced formic acid, HCl, carbon monoxide, formaldehyde, ozone, and trace amounts of formyl chloride and nitric acid. In the presence of ozone, however, vinyl chloride photooxidized to carbon monoxide, formaldehyde, formic acid, and small amounts of HCl (Gay et al, 1976). Reported photooxidation products in the troposphere include hydrogen chloride and/or formyl chloride (U.S. EPA, 1985). In the presence of moisture, formyl chloride will decompose to carbon monoxide and HCl (Morrison and Boyd, 1971). Vinyl chloride reacts rapidly with OH radicals in the atmosphere. Based on a reaction rate of 6.6 x lO" cmVmolecule-sec, the estimated half-life for this reaction at 299 K is 1.5 d (Perry et al., 1977). Vinyl chloride reacts also with ozone and NO3 in the gas-phase. Sanhueza et al. (1976) reported a rate constant of 6.5 x 10 cmVmolecule-sec for the reaction with OH radicals in air at 295 K. Atkinson et al. (1988) reported a rate constant of 4.45 X 10cmVmolecule-sec for the reaction with NO3 radicals in air at 298 K. [Pg.1147]

Berberinium chloride (45) also undergoes stereospecific cycloaddition reactions with vinyl ethers or cyclopentadiene. ... [Pg.303]

After this primer is applied vinyl chloride-vinyl acetate copolymer is added in a series of thin films. The total thickness is usually 5 mils. Pigments like iron oxide, lead, or zinc chromate prevent corrosion of the metal substrate in acid environments and may also be included in the coating. The final coated metal has good resistance to water and many chemicals with about a ten-year lifetime. [Pg.353]

Vinyl chloride is also produced by the direct chlorination of ethylene and the reaction of acetylene and hydrogen chloride (structure 17.29). The hydrogen chloride generated in the chlorination of ethylene can be employed in reaction with acetylene allowing a useful coupling of these two reactions (equation 17.30). [Pg.537]

Not only the case of vinyl chloride but also styrene shows that the observed chain transfer to monomer is not the simple reaction described by Eq. 3-112. Considerable evidence [Olaj et al., 1977a,b] indicates that the experimentally observed Cm may be due in large part to the Diels-Alder dimer XII transferring a hydrogen (probably the same hydrogen transferred in the thermal initiation process) to monomer. [Pg.244]


See other pages where Chloride, vinyl, also is mentioned: [Pg.165]    [Pg.419]    [Pg.276]    [Pg.283]    [Pg.284]    [Pg.378]    [Pg.514]    [Pg.515]    [Pg.396]    [Pg.181]    [Pg.317]    [Pg.33]    [Pg.292]    [Pg.160]    [Pg.693]    [Pg.805]    [Pg.693]    [Pg.104]    [Pg.146]    [Pg.653]    [Pg.408]    [Pg.229]    [Pg.250]    [Pg.367]    [Pg.58]    [Pg.39]    [Pg.399]    [Pg.63]    [Pg.298]   


SEARCH



Vinyl chloride

Vinylic chlorides

© 2024 chempedia.info