Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform spectroscopy FTS

From a practical point of view, the optical detection of possible X—H bonds in hydrogenated samples is performed at LHeT as a better sensitivity is obtained at this temperature because the features are sharper than the ones observed at ambient. The sensitivity of Fourier Transform Spectroscopy (FTS) allows usually a normal incidence geometry of the optical beam. Two kinds of samples are generally used in the hydrogenation studies. The first are thin epitaxial layers (1 to 5 in thickness) with dopant concentrations in the 1017-102° at/cm3 range on a semi-insulating... [Pg.490]

Fourier transform methods have come into their own as a means of studying the optical spectra of gas-phase radicals. Both infrared (FTIR) and ultraviolet/visible spectroscopy (FTUV/VIS) are now used to scrutinize these reactive molecules. We discuss the underlying principles of Fourier transform spectroscopy (FTS) with particular emphasis on the advantages and drawbacks of FTIR and FTUV/VIS measurements. Extensive tables are presented of metastable molecules that have been studied by Fourier transform methods. [Pg.158]

The goal of Double Fourier Modulation is to measure the spectral and spatial characteristics of an object simultaneously and it can be understood as the combination of two well known techniques Fourier transform spectroscopy (FTS) and Stellar Interferometry. The literature regarding both FTS and Stellar Interferometry is extensive, and the concepts presented here are the ones related to the work of this Thesis. [Pg.17]

L. M. Logan, Signal-to-noise enhancement of Fourier transform spectroscopy (FTS) by electrical filter compensation of slide velocity errors, in Multiplex and/or High Throughput Spectroscopy, G. A. Vanasse, Ed., Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, 1979, Vol. 191, p. 110. [Pg.175]

In Fourier transform spectroscopy (FTS), the output of the detector can be represented as a value that is a function of the independent variable, usually time. For a given finite measurement time T, it can be considered a transient signal that lasts T seconds. This transient is the interferogram in FT-IR or the free induction decay in FT-NMR. In either case, this transient function contains all the spectral information being measured, but the spectral amplitude for each frequency is encoded in the detector signal and in general is not discernible directly. The Fourier transform is a mathematical operation that can be used to change this function of time into an amplitude that is a function of frequency, which is a representation of the desired spectrum. [Pg.632]

As mentioned, we also carried out IR studies (a fast vibrational spectroscopy) early in our work on carbocations. In our studies of the norbornyl cation we obtained Raman spectra as well, although at the time it was not possible to theoretically calculate the spectra. Comparison with model compounds (the 2-norbornyl system and nortri-cyclane, respectively) indicated the symmetrical, bridged nature of the ion. In recent years, Sunko and Schleyer were able, using the since-developed Fourier transform-infrared (FT-IR) method, to obtain the spectrum of the norbornyl cation and to compare it with the theoretically calculated one. Again, it was rewarding that their data were in excellent accord with our earlier work. [Pg.143]

Regarding the characterization of corn cob xylan by Fourier-transform infrared (FT-IR) spectroscopy, two main absorption bands at 3405 cm-i and 1160 cm-i are revealed. They can... [Pg.67]

The growth and decay of all other species (including O3) were monitored by Fourier transform infrared (FT-IR) spectroscopy at a total pathlength of 460 meters and a spectral resolution of 1 cm". At this pathlength, the intense absorptions of H2O and CO limit the usable IR spectral windows to the approximate regions 750-1300, 2000-2300, and 2400-3000 cm". Each spectrum (700-3000 cm" ) was adequately covered by the response of the Cu Ge detector. Approximately 40 seconds were required to collect the 32 interferograms co-added for each spectrum. [Pg.118]

Fourier transform spectroscopy technology is widely used in infrared spectroscopy. A spectrum that formerly required 15 min to obtain on a continuous wave instrument can be obtained in a few seconds on an FT-IR. This greatly increases research and analytical productivity. In addition to increased productivity, the FT-IR instrument can use a concept called Fleggetts Advantage where the entire spectrum is determined in the same time it takes a continuous wave (CW) device to measure a small fraction of the spectrum. Therefore many spectra can be obtained in the same time as one CW spectrum. If these spectra are summed, the signal-to-noise ratio, S/N can be greatly increased. Finally, because of the inherent computer-based nature of the FT-IR system, databases of infrared spectra are easily searched for matching or similar compounds. [Pg.150]

NMR) [24], and Fourier transform-infrared (FT-IR) spectroscopy [25] are commonly applied methods. Analysis using mass spectrometric (MS) techniques has been achieved with gas chromatography-mass spectrometry (GC-MS), with chemical ionisation (Cl) often more informative than conventional electron impact (El) ionisation [26]. For the qualitative and quantitative characterisation of silicone polyether copolymers in particular, SEC, NMR, and FT-IR have also been demonstrated as useful and informative methods [22] and the application of high-temperature GC and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) is also described [5]. [Pg.239]

The main techniques employed for the characterization of clusters include UV/vis optical absorption, luminescence, mass spectrometry, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR). Single crystal X-ray diffraction (XRD) has been used to determine the structures of a few clusters [17-19]. [Pg.339]

This section will focus on the stmcture and energetics of chiral molecular complexes studied with Fourier-transform IR (FT-IR), microwave, LIF, hole burning (HB), IR fluorescence dip spectroscopy, resonance-enhanced multiphoton ionization (REMPl Fig. 5), and RET spectroscopy. [Pg.179]

Fourier transform-infrared (FT-IR) spectroscopic studies on SO-SA complexation provides information that may be complementary to that of NMR and other techniques, namely, in particular, on the involvement of functional groups in intermolecular and intramolecular interactions. Attenuated total reflectance (ATR) IR spectroscopy has been used for the study of binding modes of cinchona alkaloid selectors either in solution [95] or in solid state [94], or directly on the CSP [96]. [Pg.53]

Fourier-transform infrared (FT-IR) spectroscopy and small-angle X-ray (SAXS) and neutron (SANS) scattering studies have shown the existence of a further pressure induced gel phase in DPPC bilayers." " Pressure dependent NMR studies yielded complementary information on the pressure-induced gel phases. The gel state of DPPC bilayers shows a variation in lineshapes which depend on the particular pressure and temperature. The types of lineshapes seen in a high pressure investigation of dg2-DPPC by Jonas et al. are... [Pg.182]

Brown, J. M. Elliott, J. J. "The Quantitative Analysis of Minerals by Fourier Transform Infrared (FT-IR) Spectroscopy", from Workshop on Application of IR Methods to the Study of Clay Minerals, Clay Mineral Society, 20th Annual Meeting, October 1, 1983, Buffalo, NY. [Pg.59]

The second approach is to perform traditional pre-formulational studies using full factorial or Plackett Burman experimental designs [15]. Here, the preferred analytical methodology tends to be thermal and spectroscopic, rather than chromatographic, although the latter methodologies are still utilised. Differential scanning calorimetry (DSC), isothermal calorimetry (ITC) or Fourier-transform infrared (FT-IR) spectroscopy have all been utilised successfully. [Pg.24]

Several analytical techniques have been used to characterize the polymer/ silane coupling agent interphase. Culler et aL [2] used Fourier transform infrared (FT-IR) spectroscopy to characterize the chemical reactions at the matrix/silane interphase of composite materials. They correlated the extent of reaction of the resin with the coupling agent (as determined by FT-IR) with the extent of interpenetration. Culler et al. [2] have also used observations of improved resistance of the interphase region to solvent attack as indirect evidence to support the interpenetrating network theory. [Pg.296]


See other pages where Fourier transform spectroscopy FTS is mentioned: [Pg.302]    [Pg.438]    [Pg.84]    [Pg.874]    [Pg.143]    [Pg.176]    [Pg.18]    [Pg.477]    [Pg.222]    [Pg.496]    [Pg.302]    [Pg.438]    [Pg.84]    [Pg.874]    [Pg.143]    [Pg.176]    [Pg.18]    [Pg.477]    [Pg.222]    [Pg.496]    [Pg.314]    [Pg.412]    [Pg.739]    [Pg.96]    [Pg.297]    [Pg.156]    [Pg.10]    [Pg.32]    [Pg.194]    [Pg.2]    [Pg.297]    [Pg.693]    [Pg.10]    [Pg.339]    [Pg.151]   
See also in sourсe #XX -- [ Pg.254 ]




SEARCH



FT Fourier transform

FT spectroscopy

Fourier Transform Infrared Emission Spectroscopy (FT-IRES)

Fourier Transform Near-Infrared Spectroscopy (FT-NIR)

Fourier spectroscopy

Fourier transform infrared spectroscopy FT-IR)

Fourier transform spectroscopy

Fourier-transformed infrared spectroscopy FT-IR)

© 2024 chempedia.info