Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform ion cyclotron mass spectrometer

FIGURE 4.5 Continued, (d) ESI quadrupole time-of-flight mass spectrometer and (e) ESI Fourier transform ion cyclotron mass spectrometer. CID = collision-induced dissociation, Q = quadrupole mass analyzer, q = RE only ion guide, D = detector, P = pusher electrode, MSI = first stage of mass spectrometry, MS2 = second stage of mass spectrometry, and PSD =... [Pg.80]

A sample contains a mixture of three compounds, the molecular ions of which can be separated by a mass spectrometer at a resolution of 9500. Your laboratory is equipped with the following instruments (a) a double-focusing magnetic-sector spectrometer, (b) a single-quadmpole spectrometer, (c) a quadrupole ion-trap spectrometer, (d) a linear time-of-flight (TOP) spectrometer, (e) a refiectron-TOF spectrometer, and (f) a Fourier transform ion cyclotron mass spectrometer. Suggest aU possible choices among these instruments that you can employ for the analysis of this mixture. [Pg.111]

Sannes-Lowery, K.A. Hofstadler, S.A. Sequence Confirmation of Modified Oligonucleotides Using IRMPD in the External Ion Reservoir of an Electrospray Ionization Fourier Transform Ion Cyclotron Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2003,14, 825-833. [Pg.619]

The instruments used for the experimental work detailed in this review are several high-pressure mass spectrometers (HPMS) and a Fourier transform ion cyclotron resonance spectrometer (FTICR). Each of the instruments was constructed, to a considerable degree, in-house at the University of Waterloo, and each contains features unique to its type of apparatus. The instruments in general and the unique features of the Waterloo apparatus in particular are described below. [Pg.44]

Fourier transform ion cyclotron mass spectrometry (FT-ICR-MS) instrumentation offers excellent sensitivity, accuracy (<1 ppm), and high mass resolution (>1,000,000) (Table 10.2). However, because of being too expensive, difficult to use, and not compatible with conventional HPLC columns and flow rates, FTMS has not been frequently used in pharmaceutical research. This changed with an introduction of a hybrid instrument consisting of a linear ion-trap mass spectrometer compatible with LC and an ion-cyclotron-resonance (ICR) detector. Such a hybrid instrument is compatible with conventional HPLC and allows for acquisition of accurate mass data-dependent MS" spectra. Sanders et al. [128] recently reviewed the utility of hybrid LTQ-FTMS for drug metabolism and metabonomics applications while Brown et al. [129] reviewed the metabolomics applications of FT-ICR-MS. [Pg.318]

Fourier transform ion cyclotron resonance spectrometer, with a mass accuracy better than 1 ppm. Such instruments have been used in the characterisation of hundreds of intact molecules in a single analysis of proteins from E. coli [500]. [Pg.725]

B1.7.6 FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETERS... [Pg.1354]

Other types of mass spectrometer may use point, array, or both types of collector. The time-of-flight (TOF) instrument uses a special multichannel plate collector an ion trap can record ion arrivals either sequentially in time or all at once a Fourier-transform ion cyclotron resonance (FTICR) instrument can record ion arrivals in either time or frequency domains which are interconvertible (by the Fourier-transform technique). [Pg.201]

Other techniques for mass measurement are available, but they are not as popular as those outlined above. These other methods include mass measurements on a standard substance to calibrate the instrument. The standard is then withdrawn, and the unknown is let into the instrument to obtain a new spectrum that is compared with that of the standard. It is assumed that there are no instrumental variations during this changeover. Generally, this technique is less reliable than when the standard and unknown are in the instrument together. Fourier-transform techniques are used with ion cyclotron mass spectrometers and give excellent mass accuracy at lower mass but not at higher. [Pg.274]

A simple mass spectrometer of low resolution (many quadrupoles, magnetic sectors, time-of-flight) cannot easily be used for accurate mass measurement and, usually, a double-focusing magnetic/electric-sector or Fourier-transform ion cyclotron resonance instrument is needed. [Pg.416]

Instruments are available that can perform MS/MS type experiments using a single analyzer. These instruments trap and manipulate ions in a trapping cell, which also serves as the mass analyzer. The ion trap and fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers are examples. [Pg.14]

The kinetics study [38] utilized a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer to measure the pathway branching ratios. The ability to eject selected masses and the extremely high mass resolution of this technique ensured that the observed CD3CH2 was in fact a primary product of the reaction. Temporal profiles from this reaction are shown in Fig. 1. Noticeably absent from the mass spectrum are the cations C2D2H3 and... [Pg.229]

Resolution does not affect the accuracy of the individual accurate mass measurements when no separation problem exists. When performing accurate mass measurements on a given component in a mixture, it may be necessary to raise the resolution of the mass spectrometer wherever possible. Atomic composition mass spectrometry (AC-MS) is a powerful technique for chemical structure identification or confirmation, which requires double-focusing magnetic, Fourier-transform ion-cyclotron resonance (FTICR) or else ToF-MS spectrometers, and use of a suitable reference material. The most common reference materials for accurate mass measurements are perfluorokerosene (PFK), perfluorotetrabutylamine (PFTBA) and decafluorotriph-enylphosphine (DFTPP). One of the difficulties of high-mass MS is the lack of suitable calibration standards. Reference inlets to the ion source facilitate exact mass measurement. When appropriately calibrated, ToF mass... [Pg.356]

In mass spectrometers, ions are analysed according to the ml7. (mass-to-charge) value and not to the mass. While there are many possible combinations of technologies associated with a mass-spectrometry experiment, relatively few forms of mass analysis predominate. They include linear multipoles, such as the quadrupole mass filter, time-of-flight mass spectrometry, ion trapping forms of mass spectrometry, including the quadrupole ion trap and Fourier-transform ion-cyclotron resonance, and sector mass spectrometry. Hybrid instruments intend to combine the strengths of the component analysers. [Pg.386]

B magnetic sector E = electric sector Q = quadrupole mass filter ToF = time-of-flight mass spectrometer IT = ion trap FTICR = Fourier-transform ion-cyclotron resonance. [Pg.386]

B, magnetic sector Q, quadrupole mass Hlter ToF, time-of-flight spectrometer IT, ion trap FTICR, Fourier-transform ion-cyclotron resonance. [Pg.387]

Currently PCR and mass spectrometry are performed by two separate instruments. However, there is no reason why PCR followed by simple automated cleanup and mass spectrometry cannot be incorporated into a single integrated instrument. Essentially every configuration of the modern ESI mass spectrometer has been used successfully for the analysis of PCR products, from the highest to the lowest resolution involving. Fourier transform ion cyclotron resonance (FTICR), triple quadrupole, quadrupole-time of flight (Q-TOF), and ion trap.22-24 MS discriminates between two structurally related PCR products by MW difference. Mass accuracy is needed to differentiate the... [Pg.28]

It should be pointed out that FAB, MALDI, and ESI can be used to provide ions for peptide mass maps or for microsequencing and that any kind of ion analyzer can support searches based only on molecular masses. Fragment or sequence ions are provided by instruments that can both select precursor ions and record their fragmentation. Such mass spectrometers include ion traps, Fourier transform ion cyclotron resonance, tandem quadrupole, tandem magnetic sector, several configurations of time-of-flight (TOF) analyzers, and hybrid systems such as quadrupole-TOF and ion trap-TOF analyzers. [Pg.262]

Multiple mass analyzers exist that can perform tandem mass spectrometry. Some use a tandem-in-space configuration, such as the triple quadrupole mass analyzers illustrated (Fig.3.9). Others use a tandem-in-time configuration and include instruments such as ion-traps (ITMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS or FTMS). A triple quadrupole mass spectrometer can only perform the tandem process once for an isolated precursor ion (e.g., MS/MS), but trapping or tandem-in-time instruments can perform repetitive tandem mass spectrometry (MS ), thus adding n 1 degrees of structural characterization and elucidation. When an ion-trap is combined with HPLC and photodiode array detection, the net result is a profiling tool that is a powerful tool for both metabolite profiling and metabolite identification. [Pg.47]

Figure 2.19. Schematic of a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (a) and a cylindrical cell (b). Reprinted from A. Westman-Brinkmalm and G. Brinkmalm (2002). In Mass Spectrometry and Hyphenated Techniques in Neuropeptide Research, J. Silberring and R. Ekman (eds.) New York John Wiley Sons, 47-105. With... Figure 2.19. Schematic of a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (a) and a cylindrical cell (b). Reprinted from A. Westman-Brinkmalm and G. Brinkmalm (2002). In Mass Spectrometry and Hyphenated Techniques in Neuropeptide Research, J. Silberring and R. Ekman (eds.) New York John Wiley Sons, 47-105. With...
In addition to the diversity of ionisation techniques available, mass spectrometers offer a selection of mass analyser configurations. Of note are single (MS) and triple quadrupole (MS—MS) instruments, ion trap analysers (MS)n, time-of-flight (ToF) analysers, sector field analysers, and Fourier transform-ion cyclotron resonance (FTICR) instruments. [Pg.147]

Capillary electrophoresis (CE) either coupled to MS or to laser-induced fluorescence (LIF) is less often used in metabolomics approaches. This method is faster than the others and needs a smaller sample size, thereby making it especially interesting for single cell analysis [215] The most sensitive mass spectrometers are the Orbitrap and Fourier transform ion cyclotron resonance (FT-ICR) MS [213]. These machines determine the mass-to-charge ratio of a metabolite so accurate that its empirical formula can be predicted, making them the techniques of choice for the identification of unknown peaks. [Pg.151]

The proton affinities of 1,2- and 1,3-butadiene and of 2-butyne have been determined by Lias and Ausloos79 using equilibrium measurements in an Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Surprisingly, they were found to be almost identical. The bimolecular reactivity of the C4FL+ cations formed from the three isomers was also reported. [Pg.17]

To date, only few very recent gas-phase studies on this subject can be retrieved from the literature, i.e., (i) a gas-phase study on the displacement of several amino acids from the chiral amido esorcinarene 9 (Scheme 9) carried out by Speranza and coworkers using an electrospray-ionization Fourier-transform ion cyclotron resonance (ESl-FT-lCR) mass spectrometer," " and (ii) Lebrilla and coworkers study on the ability of the achiral calix[4]arene 7 and calix[6]arene 8 to form inclusion complexes with natural amino acids under matrix-assisted laser... [Pg.229]

The gaseous dichlorocarbene radical cation reacted with alkyl halides via a fast electrophilic addition to form a covalently bonded intermediate (CI2C—X—R)+ in a Fourier transform ion cyclotron resonance mass spectrometer. This intermediate fragments either homolytically or heterolytically to produce net halogen atom or halogen ion transfer product. Addition of carbonyls to the carbene ion is followed by homolytic cleavage of the C-O bond to yield a new carbene radical cation. [Pg.181]

With time of flight instruments, a mass accuracy better than 5 ppm can be achieved, while with Fourier transform ion cyclotron resonance or orbitrap mass spectrometers mass accuracies better than 1 ppm have been reported. It is obvious that, for good mass accuracies, the peaks must be baseline resolved and resolution plays an essential role. For the present example, a mass resolving power of 5000 seems to be quite acceptable. In the case of the [M+H]+ + 1 isotope peak, the situation becomes somewhat more complex for molecules containing nitrogen, sulfur or carbon. Figure 1.5 D illustrates at a mass resolving power of 500000 the contribution of... [Pg.9]

The same group studied the lithium cation basicities of a series of compounds of the general formula R R R PO, i.e. phosphine oxides, phosphinates, phosphonates and phosphates, by using Fourier Transform Ion Cyclotron Resonance (FTTCR) mass spectrometry. A summary of their results is shown in Figure 4. The effect of methyl substitution on LCA as well as the correlation between LCA and PA was also investigated by Taft, Yanez and coworkers on a series of methyldiazoles with an FTICR mass spectrometer. They showed that methyl substituent effects on Li binding energies are practically additive. [Pg.211]


See other pages where Fourier transform ion cyclotron mass spectrometer is mentioned: [Pg.99]    [Pg.99]    [Pg.27]    [Pg.147]    [Pg.99]    [Pg.99]    [Pg.27]    [Pg.147]    [Pg.189]    [Pg.395]    [Pg.116]    [Pg.86]    [Pg.155]    [Pg.244]    [Pg.402]    [Pg.349]    [Pg.421]    [Pg.164]    [Pg.514]    [Pg.547]    [Pg.483]    [Pg.149]    [Pg.185]    [Pg.5]    [Pg.36]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Cyclotron

Cyclotron mass

Cyclotron mass spectrometers

Fourier transform ion cyclotron

Fourier transform ion cyclotron mass

Fourier transform ion cyclotron resonance FTICR) mass spectrometers

Fourier transform ion cyclotron resonance mass spectrometer

Fourier transform spectrometers

Ion cyclotron

Ion transformations

Mass spectrometer Fourier-transform

Spectrometer Fourier

© 2024 chempedia.info