Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclotron mass spectrometer

Other techniques for mass measurement are available, but they are not as popular as those outlined above. These other methods include mass measurements on a standard substance to calibrate the instrument. The standard is then withdrawn, and the unknown is let into the instrument to obtain a new spectrum that is compared with that of the standard. It is assumed that there are no instrumental variations during this changeover. Generally, this technique is less reliable than when the standard and unknown are in the instrument together. Fourier-transform techniques are used with ion cyclotron mass spectrometers and give excellent mass accuracy at lower mass but not at higher. [Pg.274]

FIGURE 4.5 Continued, (d) ESI quadrupole time-of-flight mass spectrometer and (e) ESI Fourier transform ion cyclotron mass spectrometer. CID = collision-induced dissociation, Q = quadrupole mass analyzer, q = RE only ion guide, D = detector, P = pusher electrode, MSI = first stage of mass spectrometry, MS2 = second stage of mass spectrometry, and PSD =... [Pg.80]

A sample contains a mixture of three compounds, the molecular ions of which can be separated by a mass spectrometer at a resolution of 9500. Your laboratory is equipped with the following instruments (a) a double-focusing magnetic-sector spectrometer, (b) a single-quadmpole spectrometer, (c) a quadrupole ion-trap spectrometer, (d) a linear time-of-flight (TOP) spectrometer, (e) a refiectron-TOF spectrometer, and (f) a Fourier transform ion cyclotron mass spectrometer. Suggest aU possible choices among these instruments that you can employ for the analysis of this mixture. [Pg.111]

Sannes-Lowery, K.A. Hofstadler, S.A. Sequence Confirmation of Modified Oligonucleotides Using IRMPD in the External Ion Reservoir of an Electrospray Ionization Fourier Transform Ion Cyclotron Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2003,14, 825-833. [Pg.619]

The most widely used type of trap for the study of ion-molecule reactivity is the ion-cyclotron-resonance (ICR) [99] mass spectrometer and its successor, the Fourier-transfomi mass spectrometer (FTMS) [100, 101]. Figure A3.5.8 shows the cubic trapping cell used in many FTMS instmments [101]. Ions are created in or injected into a cubic cell in a vacuum of 10 Pa or lower. A magnetic field, B, confines the motion in the x-y... [Pg.810]

The chapter is divided into sections, one for each general class of mass spectrometer magnetic sector, quadnipole, time-of-flight and ion cyclotron resonance. The experiments perfonned by each are quite often unique and so have been discussed separately under each heading. [Pg.1329]

B1.7.6 FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETERS... [Pg.1354]

Figure Bl.7.18. (a) Schematic diagram of the trapping cell in an ion cyclotron resonance mass spectrometer excitation plates (E) detector plates (D) trapping plates (T). (b) The magnetron motion due to tire crossing of the magnetic and electric trapping fields is superimposed on the circular cyclotron motion aj taken up by the ions in the magnetic field. Excitation of the cyclotron frequency results in an image current being detected by the detector electrodes which can be Fourier transfonned into a secular frequency related to the m/z ratio of the trapped ion(s). Figure Bl.7.18. (a) Schematic diagram of the trapping cell in an ion cyclotron resonance mass spectrometer excitation plates (E) detector plates (D) trapping plates (T). (b) The magnetron motion due to tire crossing of the magnetic and electric trapping fields is superimposed on the circular cyclotron motion aj taken up by the ions in the magnetic field. Excitation of the cyclotron frequency results in an image current being detected by the detector electrodes which can be Fourier transfonned into a secular frequency related to the m/z ratio of the trapped ion(s).
In the other types of mass spectrometer discussed in this chapter, ions are detected by having them hit a detector such as an electron multiplier. In early ICR instruments, the same approach was taken, but FT-ICR uses a very different teclmique. If an RF potential is applied to the excitation plates of the trapping cell (figure B 1.7.18(b)) equal to the cyclotron frequency of a particular ion m/z ratio, resonant excitation of the ion trajectories takes place (without changing the cyclotron frequency). The result is ion trajectories of higher... [Pg.1356]

Other types of mass spectrometer may use point, array, or both types of collector. The time-of-flight (TOF) instrument uses a special multichannel plate collector an ion trap can record ion arrivals either sequentially in time or all at once a Fourier-transform ion cyclotron resonance (FTICR) instrument can record ion arrivals in either time or frequency domains which are interconvertible (by the Fourier-transform technique). [Pg.201]

Other types of mass spectrometer can use point, array, or both types of ion detection. Ion trap mass spectrometers can detect ions sequentially or simultaneously and in some cases, as with ion cyclotron resonance (ICR), may not use a formal electron multiplier type of ion collector at all the ions can be detected by their different electric field frequencies in flight. [Pg.212]

A simple mass spectrometer of low resolution (many quadrupoles, magnetic sectors, time-of-flight) cannot easily be used for accurate mass measurement and, usually, a double-focusing magnetic/electric-sector or Fourier-transform ion cyclotron resonance instrument is needed. [Pg.416]

Mass spectrometer configuration. Multianalyzer instruments should be named for the analyzers in the sequence in which they are traversed by the ion beam, where B is a magnetic analyzer, E is an electrostatic analyzer, Q is a quadrupole analyzer, TOP is a time-of-flight analyzer, and ICR is an ion cyclotron resonance analyzer. For example BE mass spectrometer (reversed-geometry double-focusing instrument), BQ mass spectrometer (hybrid sector and quadrupole instrument), EBQ (double-focusing instrument followed by a quadrupole). [Pg.430]

Instruments are available that can perform MS/MS type experiments using a single analyzer. These instruments trap and manipulate ions in a trapping cell, which also serves as the mass analyzer. The ion trap and fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers are examples. [Pg.14]

Tandem mass spectrometry (MS/MS) is a method for obtaining sequence and structural information by measurement of the mass-to-charge ratios of ionized molecules before and after dissociation reactions within a mass spectrometer which consists essentially of two mass spectrometers in tandem. In the first step, precursor ions are selected for further fragmentation by energy impact and interaction with a collision gas. The generated product ions can be analyzed by a second scan step. MS/MS measurements of peptides can be performed using electrospray or matrix-assisted laser desorption/ionization in combination with triple quadruple, ion trap, quadrupole-TOF (time-of-flight), TOF-TOF or ion cyclotron resonance MS. Tandem... [Pg.1191]

The kinetics study [38] utilized a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer to measure the pathway branching ratios. The ability to eject selected masses and the extremely high mass resolution of this technique ensured that the observed CD3CH2 was in fact a primary product of the reaction. Temporal profiles from this reaction are shown in Fig. 1. Noticeably absent from the mass spectrum are the cations C2D2H3 and... [Pg.229]

Rapid scanning mass spectrometers providing unit resolution are routinely used as chroaatographic detectors. Ion separation is accomplished using either a magnetic sector, quadrupole filter or ion trap device. Ions can also be separated by time-of-flight or ion cyclotron resonance mass analyzers but these devices are not widely used with chromatograidiic inlets and will not be discussed here [20]. [Pg.991]

Resolution does not affect the accuracy of the individual accurate mass measurements when no separation problem exists. When performing accurate mass measurements on a given component in a mixture, it may be necessary to raise the resolution of the mass spectrometer wherever possible. Atomic composition mass spectrometry (AC-MS) is a powerful technique for chemical structure identification or confirmation, which requires double-focusing magnetic, Fourier-transform ion-cyclotron resonance (FTICR) or else ToF-MS spectrometers, and use of a suitable reference material. The most common reference materials for accurate mass measurements are perfluorokerosene (PFK), perfluorotetrabutylamine (PFTBA) and decafluorotriph-enylphosphine (DFTPP). One of the difficulties of high-mass MS is the lack of suitable calibration standards. Reference inlets to the ion source facilitate exact mass measurement. When appropriately calibrated, ToF mass... [Pg.356]

In mass spectrometers, ions are analysed according to the ml7. (mass-to-charge) value and not to the mass. While there are many possible combinations of technologies associated with a mass-spectrometry experiment, relatively few forms of mass analysis predominate. They include linear multipoles, such as the quadrupole mass filter, time-of-flight mass spectrometry, ion trapping forms of mass spectrometry, including the quadrupole ion trap and Fourier-transform ion-cyclotron resonance, and sector mass spectrometry. Hybrid instruments intend to combine the strengths of the component analysers. [Pg.386]

B magnetic sector E = electric sector Q = quadrupole mass filter ToF = time-of-flight mass spectrometer IT = ion trap FTICR = Fourier-transform ion-cyclotron resonance. [Pg.386]

The ability to selectively excite a particular ion (or group of ions) by irradiating the cell with the appropriate radiofrequencies provides a level of flexibility unparalleled in any other mass spectrometer. The amplitude and duration of the applied RF pulse determine the ultimate radius of the ion trajectories. Thus, by simply turning on the appropriate radiofrequency, ions of a single m/z may be ejected from the cyclotron. In this way, a gas-phase separation of analyte from matrix is achieved. At a fixed radius of the ion trajectories the signal is proportional to the number of orbiting ions. Quantitation therefore requires precise RF control. [Pg.396]

Currently PCR and mass spectrometry are performed by two separate instruments. However, there is no reason why PCR followed by simple automated cleanup and mass spectrometry cannot be incorporated into a single integrated instrument. Essentially every configuration of the modern ESI mass spectrometer has been used successfully for the analysis of PCR products, from the highest to the lowest resolution involving. Fourier transform ion cyclotron resonance (FTICR), triple quadrupole, quadrupole-time of flight (Q-TOF), and ion trap.22-24 MS discriminates between two structurally related PCR products by MW difference. Mass accuracy is needed to differentiate the... [Pg.28]

It should be pointed out that FAB, MALDI, and ESI can be used to provide ions for peptide mass maps or for microsequencing and that any kind of ion analyzer can support searches based only on molecular masses. Fragment or sequence ions are provided by instruments that can both select precursor ions and record their fragmentation. Such mass spectrometers include ion traps, Fourier transform ion cyclotron resonance, tandem quadrupole, tandem magnetic sector, several configurations of time-of-flight (TOF) analyzers, and hybrid systems such as quadrupole-TOF and ion trap-TOF analyzers. [Pg.262]

In obtaining experimental information about the isomeric forms of ions, a variety of techniques have been used. These include ion cyclotron resonance (ICR),31 flow tube techniques, notably the selected ion flow tube (SIFT),32 and the selected ion flow drift tube (SIFDT)32 (and its simpler variant33), collision induced dissociation (CID),10,11 and the decomposition of metastable ions in mass spectrometers.13 All of these techniques are mentioned in the text of Section in whore they have provided data relevant to the present review. [Pg.87]


See other pages where Cyclotron mass spectrometer is mentioned: [Pg.99]    [Pg.51]    [Pg.68]    [Pg.99]    [Pg.40]    [Pg.35]    [Pg.262]    [Pg.27]    [Pg.37]    [Pg.147]    [Pg.206]    [Pg.99]    [Pg.51]    [Pg.68]    [Pg.99]    [Pg.40]    [Pg.35]    [Pg.262]    [Pg.27]    [Pg.37]    [Pg.147]    [Pg.206]    [Pg.1355]    [Pg.189]    [Pg.195]    [Pg.281]    [Pg.282]    [Pg.1029]    [Pg.336]    [Pg.58]    [Pg.395]    [Pg.396]    [Pg.187]    [Pg.462]    [Pg.35]   
See also in sourсe #XX -- [ Pg.274 ]

See also in sourсe #XX -- [ Pg.274 ]




SEARCH



Cyclotron

Cyclotron mass

Fourier transform ion cyclotron mass spectrometer

Fourier transform ion cyclotron resonance FTICR) mass spectrometers

Fourier transform ion cyclotron resonance mass spectrometer

© 2024 chempedia.info