Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorescence, quantitative determination

X-Ray Methods. In x-ray fluorescence the sample containing mercury is exposed to a high iatensity x-ray beam which causes the mercury and other elements ia the sample to emit characteristic x-rays. The iatensity of the emitted beam is directly proportional to the elemental concentration ia the sample (22). Mercury content below 1 ppm can be detected by this method. X-ray diffraction analysis is ordinarily used for the quaUtative but not the quantitative determination of mercury. [Pg.108]

The yellow form (11) on acidification is converted to the more stable thiol form (12). On oxidation, typically with alkaline ferhcyanide, yellow form (11) is irreversibly converted to thiochrome [299-35-4] (14), a yellow crystalline compound found naturally in yeast but with no thiamine activity. In solution, thiochrome exhibits an intense blue fluorescence, a property used for the quantitative determination of thiamine. [Pg.86]

Over the last seventeen year s the Analytical center at our Institute amassed the actual material on the application of XRF method to the quantitative determination of some major (Mg, Al, P, S, Cl, K, Ti, Mn, Fe) and trace (V, Cr, Co, Ni, Zn, Rb, Sr, Y, Zr, Nb, Mo, Ba, La, Ce, Pb, Th, U) element contents [1, 2]. This paper presents the specific features of developed techniques for the determination of 25 element contents in different types of rocks using new Biaiker Pioneer automated spectrometer connected to Intel Pentium IV. The special features of X-ray fluorescence analysis application to the determination of analyzed elements in various types of rocks are presented. The softwai e of this new X-ray spectrometer allows to choose optimal calibration equations and the coefficients for accounting for line overlaps by Equant program and to make a mathematic processing of the calibration ai ray of CRMs measured by the Loader program. [Pg.457]

X-Ray Fluorescence (XRF) is a nondestructive method used for elemental analysis of materials. An X-ray source is used to irradiate the specimen and to cause the elements in the specimen to emit (or fluoresce) their characteristic X rays. A detector s)rstem is used to measure the positions of the fluorescent X-ray peaks for qualitative identiflcation of the elements present, and to measure the intensities of the peaks for quantitative determination of the composition. All elements but low-Z elements—H, He, and Li—can be routinely analyzed by XRF. [Pg.338]

Photomultipliers are appreciably more sensitive sensors than the eye in their response to line or continuum sources. Monochromators are fitted to the light beam in order to be able to operate as substance-speciflcally as possible [5]. Additional filter combinations (monochromatic and cut-off filters) are needed for the measurement of fluorescence. Appropriate instruments are not only suitable for the qualitative detection of separated substances (scanning absorption or fluorescence along the chromatogram) but also for characterization of the substance (recording of spectra in addition to hR and for quantitative determinations. [Pg.17]

The optical train employed for photometric determinations of fluorescence depends on the problem involved. A spectral resolution of the emitted fluorescence is not necessary for quantitative determinations. The optical train sketched in Figure 22B can, therefore, be employed. If the fluorescence spectrum is to be determined the fluorescent light has to be analyzed into its component parts before reaching the detector (Fig. 28). A mercury or xenon lamp is used for excitation in such cases. [Pg.38]

The relationships between amount of substance applied and the heights or areas of the peaks in the chromatogram scan are employed for the quantitative determination of fluorescent substances The following relationship is apphcable when the amount of substance is small... [Pg.40]

Nitroxides have the property of quenching fluorescence. Thus radical trapping with nitroxides containing fluorophores (e.g. 114) can be monitored by observing the appearance of fluorescence.511015 The method is highly sensitive and has been applied to quantitatively determine radical yields in PLP experiments (Section... [Pg.139]

The reagent is not suitable for quantitative determinations because the fluorescences are not stable In Fig. 1 liquid paraffin - n-hexane (1 + 2) was used to stabilize the fluorescence. [Pg.181]

Reversed-phase HPLC followed by post-column derivatization and subsequent fluorescence detection is the most common technique for quantitative determination of oxime carbamate insecticides in biological and environmental samples. However, for fast, sensitive, and specific analysis of biological and environmental samples, detection by MS and MS/MS is preferred over fluorescence detection. Thus, descriptions and recommendations for establishing and optimizing HPLC fluorescence, HPLC/ MS, and HPLC/MS/MS analyses are discussed first. This is followed by specific rationales for methods and descriptions of the recommended residue methods that are applicable to most oxime carbamates in plant, animal tissue, soil, and water matrices. [Pg.1147]

Milbemectin consists of two active ingredients, M.A3 and M.A4. Milbemectin is extracted from plant materials and soils with methanol-water (7 3, v/v). After centrifugation, the extracts obtained are diluted to volume with the extraction solvent in a volumetric flask. Aliquots of the extracts are transferred on to a previously conditioned Cl8 solid-phase extraction (SPE) column. Milbemectin is eluted with methanol after washing the column with aqueous methanol. The eluate is evaporated to dryness and the residual milbemectin is converted to fluorescent anhydride derivatives after treatment with trifluoroacetic anhydride in 0.5 M triethylamine in benzene solution. The anhydride derivatives of M.A3 and M.A4 possess fluorescent sensitivity. The derivatized samples are dissolved in methanol and injected into a high-performance liquid chromatography (HPLC) system equipped with a fluorescence detector for quantitative determination. [Pg.1332]

Rhodamine B 67 is frequently used in the quantitative determination of DNA or RNA and fluorescent labeling for DNA [190-192]. This dye was assembled onto the surface of a quartz substrate by electrostatic interaction between the fluorescence reagent RB and y-aminopropyltriethoxysilane (APES), and the Quartz/ APES/RB film was constructed (Fig. 1) [193]. [Pg.52]

One of the most popular applications of molecular rotors is the quantitative determination of solvent viscosity (for some examples, see references [18, 23-27] and Sect. 5). Viscosity refers to a bulk property, but molecular rotors change their behavior under the influence of the solvent on the molecular scale. Most commonly, the diffusivity of a fluorophore is related to bulk viscosity through the Debye-Stokes-Einstein relationship where the diffusion constant D is inversely proportional to bulk viscosity rj. Established techniques such as fluorescent recovery after photobleaching (FRAP) and fluorescence anisotropy build on the diffusivity of a fluorophore. However, the relationship between diffusivity on a molecular scale and bulk viscosity is always an approximation, because it does not consider molecular-scale effects such as size differences between fluorophore and solvent, electrostatic interactions, hydrogen bond formation, or a possible anisotropy of the environment. Nonetheless, approaches exist to resolve this conflict between bulk viscosity and apparent microviscosity at the molecular scale. Forster and Hoffmann examined some triphenylamine dyes with TICT characteristics. These dyes are characterized by radiationless relaxation from the TICT state. Forster and Hoffmann found a power-law relationship between quantum yield and solvent viscosity both analytically and experimentally [28]. For a quantitative derivation of the power-law relationship, Forster and Hoffmann define the solvent s microfriction k by applying the Debye-Stokes-Einstein diffusion model (2)... [Pg.274]

Eftink, M.R. and Chiron, C.A. (1976) Exposure of tryptophanyl residues in proteins quantitative determination by fluorescence quenching studies. Biochemistry 15, 672-679. [Pg.334]

However, the main use of fluorescence has been in the semi-quantitative determination of aromatic hydrocarbons by extraction into an organic solvent, followed by excitation at a standard wavelength and comparison with the emission from a chosen standard. These techniques have been studied by many workers [38-42],... [Pg.384]

After extraction, the urethanated films were subjected to alkaline hydrolysis of urethanes to liberate the corresponding amines, while the adipoylated films were hydrolyzed after having reacted with 7-hydroxycoumarin. Amounts of the released amines and coumarin were determined by fluorescence spectroscopy as described in the Experimental section. Since aniline as well as butylamine has no appreciable fluorescence by themselves, their fluorescence assay was made after reacting with o-phthalaldehyde in the presence of mercaptoethanol. In Figure 3, where relative fluorescence intensities are plotted as a function of concentrations of amines and hydroxycoumarin, one can see that the fluorescence intensities vary linearly with their concentration to permit us the quantitative determination of extremely small amounts of amines and hydroxycoumarin. [Pg.395]

Time-resolved approaches for multi-analyte immunoassays have been described recently. Simultaneous determination of LH, follicle stimulating hormone (FSH), hCG, and prolactin (PRL) in a multisite manual strip format has been reported. 88 Four microtiter wells are attached to a plastic strip, two-by-two and back-to-back, such that the wells can be read on a microtiter plate reader. In a quadruple-label format, the simultaneous quantitative determination of four analytes in dried blood spots can be done using europium, samarium, dysprosium, and terbium. 89 In this approach, thyroid-stimulating hormone, 17-a-hydroxyprogesterone, immunoreactive trypsin, and creatine kinase MM (CK-MM) isoenzyme are determined from dried blood samples spotted on filter paper in a microtiter well coated with a mixture of antibodies. Dissociative fluorescence enhancement of the four ions using cofluorescence-based enhancement solutions enables the time-resolved fluorescence of each ion to be measured through four narrow-band interference filters. [Pg.469]


See other pages where Fluorescence, quantitative determination is mentioned: [Pg.85]    [Pg.444]    [Pg.264]    [Pg.269]    [Pg.181]    [Pg.331]    [Pg.267]    [Pg.99]    [Pg.224]    [Pg.243]    [Pg.139]    [Pg.391]    [Pg.90]    [Pg.57]    [Pg.265]    [Pg.278]    [Pg.292]    [Pg.171]    [Pg.274]    [Pg.256]    [Pg.233]    [Pg.86]    [Pg.655]    [Pg.105]    [Pg.155]    [Pg.780]    [Pg.364]    [Pg.367]    [Pg.120]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Fluorescence determination

Fluorescence quantitation

Quantitative determination

© 2024 chempedia.info