Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorescence detection sensitivity

The FMOC derivatization offers high fluorescent detection sensitivity, but it requires an extraction step to remove unreacted FMOC and by-products. This step is a potential cause of analyte losses. Furthermore, it not suitable for Trp and Cys, because the corresponding derivatives exhibit a lower response due to intramolecular quenching of fluorescence. [Pg.795]

The analysis of cigarette smoke for 16 different polyaromatic hydrocarbons is described in this experiment. Separations are carried out using a polymeric bonded silica column with a mobile phase of 50% v/v water, 40% v/v acetonitrile, and 10% v/v tetrahydrofuran. A notable feature of this experiment is the evaluation of two means of detection. The ability to improve sensitivity by selecting the optimum excitation and emission wavelengths when using a fluorescence detector is demonstrated. A comparison of fluorescence detection with absorbance detection shows that better detection limits are obtained when using fluorescence. [Pg.613]

More sensitive detection methods and more objective recording methods (e g the employment of scanners) are constantly been striven for m order to overcome this illusion It IS for this reason too that fluorescent methods have been introduced to an increasing extent on account of their higher detection sensitivity This allows an appreciable reduction in the amount of sample applied, so that possible interfering substances are also present m smaller quantibes This increases the quality of the chromatographic separation and the subsequent m situ analysis... [Pg.79]

It is often possible to increase the detection sensitivity in visible light by exposing the dipped or sprayed chromatogram to ammonia vapors it can also be sprayed with caustic soda or potash solution. When this is done the fluorescence intensity is reduced on silica gel layers and increased on RP ones. [Pg.405]

Electrodriven separation techniques are destined to be included in many future multidimensional systems, as CE is increasingly accepted in the analytical laboratory. The combination of LC and CE should become easier as vendors work towards providing enhanced microscale pumps, injectors, and detectors (18). Detection is often a problem in capillary techniques due to the short path length that is inherent in the capillary. The work by Jorgenson s group mainly involved fluorescence detection to overcome this limit in the sensitivity of detection, although UV-VIS would be less restrictive in the types of analytes detected. Increasingly sensitive detectors of many types will make the use of all kinds of capillary electrophoretic techniques more popular. [Pg.212]

The mixture of free amino acids is reacted with OPA (Fig. 7-8) and a thiol compound. When an achiral thiol compound is used, a racemic isoindole derivative results. These derivatives from different amino acids can be used to enhance the sensitivity of fluorescence detection. Figure 7-9 shows the separation of 15 amino acids after derivatization with OPA and mercaptothiol the racemic amino acids may be separated on a reversed-phase column. If the thiol compound is unichiral, the amino acid enantiomers may be separated as the resultant diastereomeric isoindole compound in the same system. Figure 7-10 shows the separation of the same set of amino acids after derivatization with the unichiral thiol compound Wisobutyryl-L-cysteine (IBLC). [Pg.191]

In this chapter, we present the theory and results of measurements on humic acid fractions using fluorescence techniques. The fluorescence techniques are attractive for this application because of the natural fluorescence of humic materials, the hi sensitivity of fluorescence detection, and the ability to directly observe the morphology of the molecule in aqueous solutions without the need for drying or applying harsh chemical conditions. Several interesting types of information are obtained from fluorescence measurements ... [Pg.180]

Wetai Ion Analysis. We have reported a sensitive trace-metal analysis based upon HPLC separation of p-aminophenyl EDTA chelates and fluorescence detection by postcolumn reaction with fluorescamine (23). An application of the pyridone chemistry already discussed leads to a fluorescent-labeled EDTA (VIII). [Pg.219]

Care must be exercised in the choice of acid employed in chloramine T — mineral acid reagent since the detection sensitivity and also the color of the fluorescences produced depend to a significant extent on the choice of acid. This is illustrated for the purine derivatives caffeine, theobromine and theophylline in Figure 1 and Table 1. [Pg.93]

The PSP toxins represent a real challenge to the analytical chemist interested in developing a method for their detection. There are a great variety of closely related toxin structures (Figure 1) and the need exists to determine the level of each individually. They are totally non-volatile and lack any useful UV absorption. These characteristics coupled with the very low levels found in most samples (sub-ppm) eliminates most traditional chromatographic techniques such as GC and HPLC with UVA S detection. However, by the conversion of the toxins to fluorescent derivatives (J), the problem of detection of the toxins is solved. It has been found that the fluorescent technique is highly sensitive and specific for PSP toxins and many of the current analytical methods for the toxins utilize fluorescent detection. With the toxin detection problem solved, the development of a useful HPLC method was possible and somewhat straightforward. [Pg.67]

Very recently, HPLC with fluorescence detection was recommended for improving detection sensitivities of betalains. " While this technique may be worthwhile for betaxanthin analyses, its use for betacyanins cannot be recommended. Although this technique represents a worthwhile approach requiring low amounts of solvent and sample and generally characterized by a high separation efhciency, only one study dealt with the use of capillary zone electrophoresis for betalain analyses. ... [Pg.514]

The increased use of IV-methyl carbamate insecticides in agriculture demands the development of selective and sensitive analytical procedures to determine trace level residues of these compounds in crops and other food products. HPLC is the technique most widely used to circumvent heat sensitivity of these pesticides. However, HPLC with UV detection lacks the selectivity and sensitivity needed for their analysis. In the late 1970s and early 1980s, HPLC using post-column hydrolysis and derivatization was developed and refined with fluorescence detection to overcome these problems. The technique relies on the post-column hydrolysis of the carbamate moiety to methylamine with subsequent derivatization to a fluorescent isoindole product. This technique is currently the most widely used HPLC method for the determination of carbamates in water" and in fruits and vegetables." " ... [Pg.775]

A variety of formats and options for different types of applications are possible in CE, such as micellar electrokinetic chromatography (MEKC), isotachophoresis (ITP), and capillary gel electrophoresis (CGE). The main applications for CE concern biochemical applications, but CE can also be useful in pesticide methods. The main problem with CE for residue analysis of small molecules has been the low sensitivity of detection in the narrow capillary used in the separation. With the development of extended detection pathlengths and special optics, absorbance detection can give reasonably low detection limits in clean samples. However, complex samples can be very difficult to analyze using capillary electrophoresis/ultraviolet detection (CE/UV). CE with laser-induced fluorescence detection can provide an extraordinarily low LOQ, but the analytes must be fluorescent with excitation peaks at common laser wavelengths for this approach to work. Derivatization of the analytes with appropriate fluorescent labels may be possible, as is done in biochemical applications, but pesticide analysis has not been such an important application to utilize such an approach. [Pg.781]

The most common final separation techniques used for agrochemicals are GC and LC. A variety of detection methods are used for GC such as electron capture detection (BCD), nitrogen-phosphorus detection (NPD), flame photometric detection (FPD) and mass spectrometry (MS). For LC, typical detection methods are ultraviolet (UV) detection, fluorescence detection or, increasingly, different types of MS. The excellent selectivity and sensitivity of LC/MS/MS instruments results in simplified analytical methodology (e.g., less cleanup, smaller sample weight and smaller aliquots of the extract). As a result, this state-of-the-art technique is becoming the detection method of choice in many residue analytical laboratories. [Pg.878]

Reversed-phase HPLC followed by post-column derivatization and subsequent fluorescence detection is the most common technique for quantitative determination of oxime carbamate insecticides in biological and environmental samples. However, for fast, sensitive, and specific analysis of biological and environmental samples, detection by MS and MS/MS is preferred over fluorescence detection. Thus, descriptions and recommendations for establishing and optimizing HPLC fluorescence, HPLC/ MS, and HPLC/MS/MS analyses are discussed first. This is followed by specific rationales for methods and descriptions of the recommended residue methods that are applicable to most oxime carbamates in plant, animal tissue, soil, and water matrices. [Pg.1147]


See other pages where Fluorescence detection sensitivity is mentioned: [Pg.148]    [Pg.17]    [Pg.372]    [Pg.373]    [Pg.211]    [Pg.87]    [Pg.188]    [Pg.316]    [Pg.135]    [Pg.148]    [Pg.17]    [Pg.372]    [Pg.373]    [Pg.211]    [Pg.87]    [Pg.188]    [Pg.316]    [Pg.135]    [Pg.2061]    [Pg.2832]    [Pg.395]    [Pg.245]    [Pg.246]    [Pg.71]    [Pg.104]    [Pg.214]    [Pg.207]    [Pg.261]    [Pg.262]    [Pg.268]    [Pg.270]    [Pg.201]    [Pg.182]    [Pg.206]    [Pg.438]    [Pg.54]    [Pg.327]    [Pg.746]    [Pg.267]    [Pg.292]   
See also in sourсe #XX -- [ Pg.188 ]




SEARCH



Detection sensitive

Detection sensitivity

Fluorescence detection

Fluorescence sensitive detection

Fluorescence sensitive detection

Fluorescence sensitivity

Fluorescence sensitization

Fluorescence-detected

© 2024 chempedia.info