Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flow measurements pitot tubes

Dynamic pressure may be measured by use of a pitot tube that is a simple impact tube. These tubes measure the pressure at a point where the velocity of the fluid is brought to zero. Pitot tubes must be parallel to the flow. The pitot tube is sensitive to yaw or angle attack. In general angles of attack over 10° should be avoided. In cases where the flow direction is unknown, it is recommended to use a Kiel probe. Figure 10-3 shows a Kiel probe. This probe will read accurately to an angle of about 22° with the flow. [Pg.885]

The effect of pulsating flow on pitot-tube accuracy is treated by Ower et al., op. cit., pp. 310-312. For sinusoidal velocity fluctuations, the ratio of indicated velocity to actual mean velocity is given by the factor /l + AV2, where X is the velocity excursion as a fraction of the mean velocity. Thus, the indicated velocity would be about 6 percent high for velocity fluctuations of 50 percent, and pulsations greater than 20 percent should be damped to avoid errors greater than 1 percent. Tne error increases as the frequency of flow oscillations approaches the natural frequency of the pitot tube and the density of the measuring fluid approaches the density of the process fluid [see Horlock and Daneshyar, y. Mech. Eng. Sci, 15, 144-152 (1973)]. [Pg.887]

The flow of fluids is most commonly measured using head flowmeters. The operation of these flowmeters is based on the Bernoulli equation. A constriction in the flow path is used to increase the flow velocity. This is accompanied by a decrease in pressure head and since the resultant pressure drop is a function of the flow rate of fluid, the latter can be evaluated. The flowmeters for closed conduits can be used for both gases and liquids. The flowmeters for open conduits can only be used for liquids. Head flowmeters include orifice and venturi meters, flow nozzles, Pitot tubes and weirs. They consist of a primary element which causes the pressure or head loss and a secondary element which measures it. The primary element does not contain any moving parts. The most common secondary elements for closed conduit flowmeters are U-tube manometers and differential pressure transducers. [Pg.268]

Henri de Pitot invented the Pitot tube in 1732. It is a small, open-ended tube that is inserted into the process pipe with its open end facing into the flow. The differential between the total pressure on this open impact port and the static pipeline pressure is measured as an indication of the flow. The Pitot tubes provide a low-cost measurement with negligible pressure loss and can also be inserted into the process pipes while the system is under pressure (wet- or hot-tapping). They are also used for temporary measurements and for the determination of velocity profiles by traversing pipes and ducts. [Pg.420]

Pitot Tubes. The fundamental design of a pitot tube is shown in Eigure 9a. The opening into the flow stream measures the total or stagnation pressure of the stream whereas a wall tap senses static pressure. The velocity at the tip opening, lA can be obtained by the Bernoulli equation ... [Pg.61]

Chile [Prog. Aerosp. Sc7, 16, 147-223 (1975)] reviews the use of the pitot tube and allied pressure probes for impact pressure, static pressure, dynamic pressure, flow direction and local velocity, sldn friction, and flow measurements. [Pg.885]

Once these traverse points have been determined, velocity measurements are made to determine gas flow. The stack-gas velocity is usually determined by means of a pitot tube and differential-pressure gauge. When velocities are very low (less than 3 m/s [10 ft/s]) and when great accuracy is not required, an anemometer may be used. For gases moving in small pipes at relatively high velocities or pressures, orifice-disk meters or venturi meters may be used. These are valuable as continuous or permanent measuring devices. [Pg.2197]

Total pre.ssure is the pressure of the gas brought to rest in a reversible adiabatic manner. It can be measured by a pitot tube placed in the flow... [Pg.113]

The absolute, barometric pressure is not normally required in ventilation measurements. The air density determination is based on barometric pressure, but other applications are sufficiently rare. On the other hand, the measurement of pressure difference is a frequent requirement, as so many other quantities are based on pressure difference. In mass flow or volume flow measurement using orifice, nozzle, and venturi, the measured quantity is the pressure difference. Also, velocity measurement with the Pitot-static tube is basically a pressure difference measurement. Other applications for pressure difference measurement are the determination of the performance of fans and air and gas supply and e. -haust devices, the measurement of ductwork tightness or building envelope leakage rate, as well as different types of ventilation control applications. [Pg.1146]

The pitot tube is used to measure the difference between the impact and static pressures in a fluid. It normally consists of two concentric tubes arranged parallel to the direction of flow the impact pressure is measured on the open end of the inner tube. The end of the outer concentric tube is sealed and a series of orifices on the curved surface give an accurate indication of the static pressure. The position of these orifices must be carefully chosen because there are two disturbances which may cause an incorrect reading of the static pressure. These are due to ... [Pg.244]

The pitot tube measures the velocity of only a filament of fluid, and hence it can be used for exploring the velocity distribution across the pipe section. If, however, it is desired to measure the total flow of fluid through the pipe, the velocity must be measured at various distances from the walls and the results integrated. The total flowrate can be calculated from a single reading only if the velocity distribution across the section is already known. [Pg.245]

The flow patterns for single phase, Newtonian and non-Newtonian liquids in tanks agitated by various types of impeller have been repotted in the literature.1 3 27 38 39) The experimental techniques which have been employed include the introduction of tracer liquids, neutrally buoyant particles or hydrogen bubbles, and measurement of local velocities by means of Pitot tubes, laser-doppler anemometers, and so on. The salient features of the flow patterns encountered with propellers and disc turbines are shown in Figures 7.9 and 7.10. [Pg.294]

Pitot Tube Used to measure the flow rate of the source from which the sample is taken. Consists of two concentric tubes, one with an opening facing upstream and the other with an opening perpendicular to the flow. The pressiure difference between the two tubes provides a measure of gas flow rate. [Pg.935]

In this chapter we will illustrate and analyze some of the more common methods for measuring flow rate in conduits, including the pitot tube, venturi, nozzle, and orifice meters. This is by no means intended to be a comprehensive or exhaustive treatment, however, as there are a great many other devices in use for measuring flow rate, such as turbine, vane, Coriolis, ultrasonic, and magnetic flow meters, just to name a few. The examples considered here demonstrate the application of the fundamental conservation principles to the analysis of several of the most common devices. We also consider control valves in this chapter, because they are frequently employed in conjunction with the measurement of flow rate to provide a means of controlling flow. [Pg.293]

The pitot tube is a device for measuring v(r), the local velocity at a given position in the conduit, as illustrated in Fig. 10-1. The measured velocity is then used in Eq. (10-2) to determine the flow rate. It consists of a differential pressure measuring device (e.g., a manometer, transducer, or DP cell) that measures the pressure difference between two tubes. One tube is attached to a hollow probe that can be positioned at any radial location in the conduit, and the other is attached to the wall of the conduit in the same axial plane as the end of the probe. The local velocity of the streamline that impinges on the end of the probe is v(r). The fluid element that impacts the open end of the probe must come to rest at that point, because there is no flow through the probe or the DP cell this is known as the stagnation point. The Bernoulli equation can be applied to the fluid streamline that impacts the probe tip ... [Pg.294]

Determine the flow measurement method to be used during the test, i.e., flowmeter or pitot tube measures of the nearest available water outlets on the system. Ensure that the flow measurement devices are calibrated or adjusted for the fire pump maximum flow output. [Pg.250]

Insert the pitot flow measuring device into the hydrant water flow, bleed off air from the pitot tube, and then measure the pitot gage pressure. The pitot tip should be inserted in the center of the water flow stream at a distance of one-half diameter away from the outlet of the hydrant. [Pg.255]

Orifice meters, Venturi meters and flow nozzles measure volumetric flow rate Q or mean velocity u. In contrast the Pitot tube shown in a horizontal pipe in Figure 8.7 measures a point velocity v. Thus Pitot tubes can be used to obtain velocity profiles in either open or closed conduits. At point 2 in Figure 8.7 a small amount of fluid is brought to a standstill. Thus the combined head at point 2 is the pressure head P/( pg) plus the velocity head v2/(2g) if the potential head z at the centre of the horizontal pipe is arbitrarily taken to be zero. Since at point 3 fluid is not brought to a standstill, the head at point 3 is the pressure head only if points 2 and 3 are sufficiently close for them to be considered to have the same potential head... [Pg.275]

Although Pitot tubes are inexpensive and have negligible permanent head losses they are not widely used. They are highly sensitive to fouling, their required alignment is critical and they cannot measure volumetric flow rate Q or mean velocity u. The latter can be calculated from a single measurement only if the velocity distribution is known this can be found if the Pitot tube can be traversed across the flow. [Pg.277]

The Prosser was calibrated by measuring the air flows using a laminar flow meter (1% accuracy) for the odorous sample and a pitot tube with a micromanometer for the fan-blown air (3). The pitot pressures were converted to air velocities (4) and hence, from the cross sectional area of the tube, to volumetric flow rates. Since flow near the tube wall was slower than the centre, the tube was traversed by the pitot head and the average value calculated. A rotameter was also tried but it induced a back-pressure of 250 N/m2 and, as the manufacturer states that the maximum permissible back-pressure is 60 N/m for calibration to be accurate, its use was not pursued. [Pg.135]

The EPA Method 2 probe uses a standard S-type Pitot tube to determine the velocity pressure by measuring gas flow as a unidirectional vector. This method is typically 10-20% higher than the calculated flue gas rate from the FCC heat balance. The newly develop EPA Method 2F probe is a five-holed prism tip with a thermocouple. A centrally located tap measures the stagnation pressure, while two lateral taps measure the static pressure. The yaw angle is determined by rotating the probe until the difference between the two lateral holes is zero. This method closely matches the... [Pg.354]

Measurement of flow can be based on the measurement of velocity in ducts or pipes by using devices such as pitot tubes and hot wire anemometers. The local velocity is measured at various sections of a conduit and then averaged for the area under consideration. [Pg.11]

Differential Pressure Meters Differential pressure meters or head meters measure the change in pressure across a special flow element. The differential pressure increases with increasing flow rate. The pitot tubes described previously work on this principle. Other examples include orifices [see also Eqs. (6-111) and (8-102), and Fig. 10-14], nozzles (Fig. 10-19), targets, venturis (see also Sec. 8 and Fig. 10-17), and elbow meters. Averaging pitot tubes produce a pressure differential that is based on multiple measuring points across the flow path. [Pg.14]

Pitot tubes -in flow meters [FLOW MEASUREMENT] (Vol 11)... [Pg.767]

Rapid aerodynamic flow past obstacles involves adiabatic compressions and rarefactions, and is influenced by relaxation of internal degrees of freedom in a way similar to shock phenomena. This effect has been quantitatively treated by Kan-trowitz18, who developed a method for obtaining relaxation times by measuring the pressure developed in a small Pitot tube which forms an obstacle in a rapid gas stream. This impact tube is not a very accurate technique, and requires a very large amount of gas it has been used to obtain a vibrational relaxation time for steam. [Pg.188]

Air and gaseous S02 in the required ratio enter Mixer 6 to mix fully with each other, and the resulting pseudo flue gas is divided into two equal streams to enter Absorber 7. The air flow rate is adjusted by a butterfly valve in the pipeline and measured with a Pitot tube-pressure difference meter and that of S02 by the rotameter 5. The total gas flow rate is also monitored by a wind velocity meter of DF-3 type at the gas outlet of the reactor. For each run, gas-samplings are made at both inlet and outlet of the reactor, and the S02 concentrations in the samples are measured with the Iodine-quantitative method, a standard and authentic method of determining the integral amount of S02 absorbed in the reactor. [Pg.173]


See other pages where Flow measurements pitot tubes is mentioned: [Pg.428]    [Pg.59]    [Pg.61]    [Pg.299]    [Pg.795]    [Pg.245]    [Pg.381]    [Pg.301]    [Pg.17]    [Pg.29]    [Pg.75]    [Pg.209]    [Pg.299]   


SEARCH



Flow measurement

Flow measuring

Flow tubing

Pitot tube

Tube flow

© 2024 chempedia.info