Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flotation types

The role of foams and foam films depends significantly on the flotation type. From all methods only the foam adsorptive accumulation of surfactants and their complexes with ions, is based entirely on the regularities of the process of substance accumulation by adsorption in the stable foam. That is why further on the main target will be the analysis of the regularities of the adsorptive accumulation and separation of surfactants in the polyhedral foam. [Pg.665]

High-flotation type tires minimize compaction of the soil during fertilizer application so that the fertilizer can be applied during wet periods. These large applicators are capable of applying fertilizer solutions at a rate of about 0.5 ha/min. [Pg.279]

Stock usually the best dewatering stock component used at the paper machine is selected in order to Hmit the size of the disc filter. In addition to cloudy and clear filtrate, disc filter save-aU applications also produce a superclear filtrate with very low solids content This superclear filtrate is used as a fresh water substitute for spray apphcations in the paper machine. The clear filtrate is stored in a buffer tank. The cloudy filtrate is usually fed directly back to the inlet of the disc filter, the used sweetener, including the recovered stock, is fed back to the thick stock in the approach flow system. DAF (dissolved air flotation) type save-alls are used in older machines and nowadays when a certain degree of ash and fines removal from the process is demanded. In this case, the sludge of the DAF is rejected. The advantages of a disc filter save-all compared to a DAF save-all are higher filtrate quahty, no chemical consumption and less space requirements (see Sections 4.2.62 and 4.2.9). [Pg.212]

Flotation. Flotation is a gravity separation process which exploits differences in the surface properties of particles. Gas bubbles are generated in a liquid and become attached to solid particles or immiscible liquid droplets, causing the particles or droplets to rise to the surface. This is used to separate mixtures of solid-solid particles and liquid-liquid mixtures of finely divided immiscible droplets. It is an important technique in mineral processing, where it is used to separate different types of ore. [Pg.70]

Table XI-1 (from Ref. 166) lists the potential-determining ion and its concentration giving zero charge on the mineral. There is a large family of minerals for which hydrogen (or hydroxide) ion is potential determining—oxides, silicates, phosphates, carbonates, and so on. For these, adsorption of surfactant ions is highly pH-dependent. An example is shown in Fig. XI-14. This type of behavior has important applications in flotation and is discussed further in Section XIII-4. Table XI-1 (from Ref. 166) lists the potential-determining ion and its concentration giving zero charge on the mineral. There is a large family of minerals for which hydrogen (or hydroxide) ion is potential determining—oxides, silicates, phosphates, carbonates, and so on. For these, adsorption of surfactant ions is highly pH-dependent. An example is shown in Fig. XI-14. This type of behavior has important applications in flotation and is discussed further in Section XIII-4.
A very important but rather complex application of surface chemistry is to the separation of various types of solid particles from each other by what is known as flotation. The general method is of enormous importance to the mining industry it permits large-scale and economic processing of crushed ores whereby the desired mineral is separated from the gangue or non-mineral-containing material. Originally applied only to certain sulfide and oxide ores. [Pg.471]

The examples in the preceding section, of the flotation of lead and copper ores by xanthates, was one in which chemical forces predominated in the adsorption of the collector. Flotation processes have been applied to a number of other minerals that are either ionic in type, such as potassium chloride, or are insoluble oxides such as quartz and iron oxide, or ink pigments [needed to be removed in waste paper processing [92]]. In the case of quartz, surfactants such as alkyl amines are used, and the situation is complicated by micelle formation (see next section), which can also occur in the adsorbed layer [93, 94]. [Pg.478]

Sorted plastic packaging materials are shipped, usually in bales, to processing plants to be converted to polymer resins. The bales are broken and the bottles sorted to ensure that only one type of polymer is further processed. Processing consists of chopping and grinding the bottles into flakes. These flakes are washed. Processing steps such as flotation are used to remove polymeric contaminants from the flakes (15,16). The flakes are melted and converted into pellets. [Pg.230]

Potassium Chloride. The principal ore encountered in the U.S. and Canadian mines is sylvinite [12174-64-0] a mechanical mixture of KCl and NaCl. Three beneficiation methods used for producing fertilizer grades of KCl ate thermal dissolution, heavy media separation, and flotation (qv). The choice of method depends on factors such as grade and type of ore, local energy sources, amount of clay present, and local fuel and water availabiUty and costs. [Pg.232]

The raw ROM (run of mine) ore is reduced in size from boulders of up to 100 cm in diameter to about 0.5 cm using jaw cmshers as weU as cone, gyratory, or roU-type equipment. The cmshed product is further pulverized using rod mills and ball mills, bringing particle sizes to finer than about 65 mesh (230 p.m). These size reduction (qv) procedures are collectively known as comminution processes. Their primary objective is to generate mineral grains that are discrete and Hberated from one another (11). Liberation is essential for the exploitation of individual mineral properties in the separation process. At the same time, particles at such fine sizes can be more readily buoyed to the top of the flotation ceU by air bubbles that adhere to them. [Pg.41]

Fig. 4. Classification of flotation machine types and examples of brand names. Numbers indicate countries of origin of machines. 1, United States 2, Germany 3, United Kingdom 4, Norway 5, France 6, Finland 7, Sweden 8, Canada 9, former USSR 10, AustraUa and 11, South Africa. Ref. 15. Fig. 4. Classification of flotation machine types and examples of brand names. Numbers indicate countries of origin of machines. 1, United States 2, Germany 3, United Kingdom 4, Norway 5, France 6, Finland 7, Sweden 8, Canada 9, former USSR 10, AustraUa and 11, South Africa. Ref. 15.
The basic flow sheet for the flotation-concentration of nonsulfide minerals is essentially the same as that for treating sulfides but the family of reagents used is different. The reagents utilized for nonsulfide mineral concentrations by flotation are usually fatty acids or their salts (RCOOH, RCOOM), sulfonates (RSO M), sulfates (RSO M), where M is usually Na or K, and R represents a linear, branched, or cycHc hydrocarbon chain and amines [R2N(R)3]A where R and R are hydrocarbon chains and A is an anion such as Cl or Br . Collectors for most nonsulfides can be selected on the basis of their isoelectric points. Thus at pH > pH p cationic surfactants are suitable collectors whereas at lower pH values anion-type collectors are selected as illustrated in Figure 10 (28). Figure 13 shows an iron ore flotation flow sheet as a representative of high volume oxide flotation practice. [Pg.50]

Soluble Salt Flotation. KCl separation from NaCl and media containing other soluble salts such as MgCl (eg, The Dead Sea works in Israel and Jordan) or insoluble materials such as clays is accompHshed by the flotation of crystals using amines as coUectors. The mechanism of adsorption of amines on soluble salts such as KCl has been shown to be due to the matching of coUector ion size and lattice vacancies (in KCl flotation) as well as surface charges carried by the soflds floated (22). Although cation-type coUectors (eg, amines) are commonly used, the utUity of sulfonates and carboxylates has also been demonstrated in laboratory experiments. [Pg.51]

The combination of stmctural strength and flotation has stimulated the design of pleasure boats using a foamed-in-place polyurethane between thin skins of high tensUe strength (231). Other ceUular polymers that have been used in considerable quantities for buoyancy appHcations are those produced from polyethylene, poly(vinyl chloride), and certain types of mbber. The susceptibUity of polystyrene foams to attack by certain petroleum products that are likely to come in contact with boats led to the development of foams from copolymers of styrene and acrylonitrUe which are resistant to these materials... [Pg.416]

The treatments used to recover nickel from its sulfide and lateritic ores differ considerably because of the differing physical characteristics of the two ore types. The sulfide ores, in which the nickel, iron, and copper occur in a physical mixture as distinct minerals, are amenable to initial concentration by mechanical methods, eg, flotation (qv) and magnetic separation (see SEPARATION,MAGNETIC). The lateritic ores are not susceptible to these physical processes of beneficiation, and chemical means must be used to extract the nickel. The nickel concentration processes that have been developed are not as effective for the lateritic ores as for the sulfide ores (see also Metallurgy, extractive Minerals recovery and processing). [Pg.2]

There is some beneficiation of talc by froth flotation (qv), practiced especially on ultramafic-type deposits. In this process (Fig. 2), talc is milled to its hberation size (—100 mesh (ca 0.15 mm)) using ball mills or ring-type roUer mills and then slurried at 10—30% in water. Flotation is done in conventional multistage float cells using methyl amyl alcohol as a frother. Typically two to four stages are required to upgrade the ore from 50—70% talc to 90—98%. The product is filtered and then flash-dried and milled to a final product. [Pg.299]

Biological processes are also being studied to investigate abiHty to remove sulfur species in order to remove potential contributors to acid rain (see Air pollution). These species include benzothiophene-type materials, which are the most difficult to remove chemically, as weU as pyritic material. The pyrite may be treated to enhance the abiHty of flotation processes to separate the mineral from the combustible parts of the coal. Genetic engineering (qv) techniques are being appHed to develop more effective species. [Pg.237]

Two types of floater aozzles are curreafly ia use and they are based on two different principles. The Bernoulli principle is used ia the airfoil flotatioa aozzles, ia which the air flows from the aozzle parallel to the web and the high velocities create a reduced pressure, which attracts the web while keeping the web from touching the nozzles. The Coanda effect is used to create a flotation nozzle when the air is focused and thus a pressure pad is created to support the web as shown ia Figure 19. [Pg.315]

Flotation Reagents. Three types of chemical reagents are used during the froth flotation process collectors, frothers, and modifiers. [Pg.1809]


See other pages where Flotation types is mentioned: [Pg.1787]    [Pg.604]    [Pg.1547]    [Pg.1108]    [Pg.1791]    [Pg.579]    [Pg.579]    [Pg.579]    [Pg.579]    [Pg.1787]    [Pg.604]    [Pg.1547]    [Pg.1108]    [Pg.1791]    [Pg.579]    [Pg.579]    [Pg.579]    [Pg.579]    [Pg.235]    [Pg.513]    [Pg.230]    [Pg.42]    [Pg.45]    [Pg.48]    [Pg.51]    [Pg.34]    [Pg.162]    [Pg.403]    [Pg.411]    [Pg.412]    [Pg.413]    [Pg.417]    [Pg.3]    [Pg.559]    [Pg.6]    [Pg.31]    [Pg.122]    [Pg.297]    [Pg.1810]    [Pg.1811]    [Pg.1811]   
See also in sourсe #XX -- [ Pg.402 , Pg.404 , Pg.405 , Pg.407 ]




SEARCH



Agitation type flotation cell

© 2024 chempedia.info