Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lateritic ores

In contrast to the sulfide ores, the lateritic ores were formed over long periods of time as a result of weathering of exposed nickel-containing rocks. The lateritic weathering process resulted in nickel solutions that were redeposited elsewhere in the form of oxides or siUcates. One type of laterite is nickeliferous limonitic iron laterite (Ee, Ni)O(OH) which consists primarily of hydrated iron oxide in which the nickel is dispersed in soHd solution. [Pg.2]

The treatments used to recover nickel from its sulfide and lateritic ores differ considerably because of the differing physical characteristics of the two ore types. The sulfide ores, in which the nickel, iron, and copper occur in a physical mixture as distinct minerals, are amenable to initial concentration by mechanical methods, eg, flotation (qv) and magnetic separation (see SEPARATION,MAGNETIC). The lateritic ores are not susceptible to these physical processes of beneficiation, and chemical means must be used to extract the nickel. The nickel concentration processes that have been developed are not as effective for the lateritic ores as for the sulfide ores (see also Metallurgy, extractive Minerals recovery and processing). [Pg.2]

Future Sources. Lateritic ores (7) are becoming increasingly important as a source of nickel, and cobalt is a by-product. In the United States, laterites are found in Minnesota, California, Oregon, and Washington. Deposits also occur in Cuba, Indonesia, New Caledonia, the Philippines, Venezuela, Guatemala, AustraUa, Canada, and Russia (see Nickel and nickel alloys). [Pg.370]

The laterites can be divided into three general classifications (/) iron nickeliferrous limonite which contains approximately 0.8—1.5 wt % nickel. The nickel to cobalt ratios for these ores are typically 10 1 (2) high siUcon serpentinous ores that contain more than 1.5 wt % nickel and (J) a transition ore between type 1 and type 2 containing about 0.7—0.2 wt % nickel and a nickel to cobalt ratio of approximately 50 1. Laterites found in the United States (8) contain 0.5—1.2 wt % nickel and the nickel occurs as the mineral goethite. Cobalt occurs in the lateritic ore with manganese oxide at an estimated wt % of 0.06 to 0.25 (9). [Pg.370]

Pressure-acid leaching was used to extract cobalt from Blackbird mine ores before its closing in 1974. The result was a very fine cobalt powder which was subjected to a seeding process to produce cobalt granules. Leaching methods are also used in the refinement of lateritic ores. [Pg.371]

Lateritic Ores. The process used at the Nicaro plant in Cuba requires that the dried ore be roasted in a reducing atmosphere of carbon monoxide at 760°C for 90 minutes. The reduced ore is cooled and discharged into an ammoniacal leaching solution. Nickel and cobalt are held in solution until the soflds are precipitated. The solution is then thickened, filtered, and steam heated to eliminate the ammonia. Nickel and cobalt are precipitated from solution as carbonates and sulfates. This method (8) has several disadvantages (/) a relatively high reduction temperature and a long reaction time (2) formation of nickel oxides (J) a low recovery of nickel and the contamination of nickel with cobalt and (4) low cobalt recovery. Modifications to this process have been proposed but all include the undesirable high 760°C reduction temperature (9). [Pg.371]

It has been mentioned in an earlier chapter that nickel deposits are basically of two types sulfidic and lateritic (oxide). The scenario of nickel extraction from nickel sulfide concentrates and nickeliferrous pyrrho tite (these two are the two products of physical beneficiation of nickel sulfide ores), and from limonitics and gamieritics (these are the common lateritic ores) has been presented in Figure 5.6. It can be seen that nickel is extracted from its various sources by pyro, pyro-hydro and hydroprocessing. The account given here pertains to the latter two processes applied to the various nickel sources. [Pg.487]

Nevertheless, manganese nodules can, at best, be considered to be similar to land-based nickel laterites, and consequently most of the processing techniques that have been tried are similar to those used on lateritic ores. Reduction roasting followed by ammonia leaching, as in the Nicaro process, and high-temperature sulfuric acid leaching, as in the Moa Bay operation, have been extensively tried to process nodules. [Pg.570]

Societe Le Nickel (SLN) employ similar chemistry at their operations to treat mattes obtained from the pyrometallurgical treatment of Ni-bearing oxidic laterite ores.104 It has demonstrated at laboratory scale that Ni-containing lateritic ores may be directly leached into HC1 acid solution without pyrometallurgical pre-concentration at atmospheric pressure and relatively low temperature (ca. 70 °C).105... [Pg.768]

More than 90% of the nickel and cobalt in laterite ores (1.0-1.6% nickel) can readily be leached by sulfuric acid at >240 °C, typically producing large volumes of relatively dilute leach solution containing 3-6 gL-1 of nickel and around 40 gL-1 H2S04.98 In addition to nickel and cobalt these leach solutions contain Al, Cr, Ca, Cu, Fe, Mg, Mn, Na, Si, and Zn.89 The design of reagents and protocols for the separation and concentration of metal values in these streams has depended heavily on differences in the coordination chemistry of the components. [Pg.786]

Mihaylov, I. Krause, E. Colton, D. F. Okita, Y. Duterque, J. P. Perraud, J. L. The development of a novel hydrometallurgical process for nickel and cobalt recovery from Goro laterite ore. CIM Bull. 2000, 93, 124-130. [Pg.804]

More than 90% of the world s nickel is obtained from pentlandite ((FeNi)9S8), a nickel-sulfitic mineral, mined underground in Canada and the former Soviet Union (Sevin 1980 IARC 1976 WHO 1991). One of the largest sulfitic nickel deposits is in Sudbury, Ontario (USPHS 1993). Nickeliferous sulfide deposits are also found in Manitoba, South Africa, the former Soviet Union, Finland, western Australia, and Minnesota (Norseth and Piscator 1979 USPHS 1993). Most of the rest of the nickel obtained is from nickel minerals such as laterite, a nickel oxide ore mined by open pit techniques in Australia, Cuba, Indonesia, New Caledonia, and the former Soviet Union (Sevin 1980). Lateritic ores are less well defined than sulfitic ores, although the nickel content (1 to 3%) of both ores is similar (USPHS 1993). Important deposits of laterite are located in New Caledonia, Indonesia, Guatemala, the Dominican Republic, the Philippines, Brazil, and especially Cuba, which holds 35% of the known reserves (USPHS 1993). Nickel-rich nodules are found on the ocean floor, and nickel is also present in fossil fuels (Sevin 1980). [Pg.445]

Caron A process for extracting nickel and cobalt from lateritic ores by reductive roasting, followed by leaching with ammoniacal ammonium carbonate solution in the presence of oxygen. Developed by M. H. Caron at The Hague in the 1920s and used in Cuba (where the location of the mine is named Nicaro, after the metal and the inventor) and in Australia. [Pg.51]

The dissolution of goethite in acidic media and the reprecipitation of the Fe as hematite, is a crucial process in the high-temperature leaching of nickel laterite ores. At 250 °C the rate of transformation increased as the Eh of the system was lowered... [Pg.387]

The lateritic hydrous nickel silicate ores are formed by the weathering of rocks rich in iron and magnesium in humid tropical areas. The repeated processes of dissolution and precipitation lead to a uniform dispersal of the nickel that is not amenable to concentration by physical means therefore, these ores are concentrated by chemical means such as leaching. Fateritic ores are less well defined than sulfide ores. The nickel content of lateritic ores is similar to that of sulfide ore and typically ranges from 1% to 3% nickel. Important lateritic deposits of nickel are located in Cuba, New Caledonia, Indonesia, Guatemala, the Dominican Republic, the Philippines, and Brazil. Fossil nickeliferous laterite... [Pg.166]

In metallurgy, hydrogen sulfide is used to precipitate copper sulfide from nickel—copper-containing ore leach solutions in Alberta, Canada, or to precipitate nickel and cobalt sulfides from sulfuric acid leaching of laterite ores in Moa Bay, Cuba (120) (see Metallurgy, extractive metallurgy). [Pg.137]

Hydrometallurgical treatment of lateritic ores, by the reduction roast/ammonia leach process is one of the methods used for the recovery of nickel from low grade lateritic ores. In a recent study Chander and his associates (19, 20) used such... [Pg.304]

Figure 18 shows a pilot-scale fluidized washer for stripping nickel from a pulp of fine laterite ore with ammonia liquor (Kwauk, 1979a, p. 19). The washer measures 1 m in diameter and 14.S m in height, with a 1.6-m diameter settling head at the top for dewatering the rather lean pulp feed, and a... [Pg.247]

PAL II [Pressure Acid Leach] A process for extracting nickel from laterite ores. Operated in Australia. [Pg.273]


See other pages where Lateritic ores is mentioned: [Pg.553]    [Pg.159]    [Pg.2]    [Pg.3]    [Pg.134]    [Pg.134]    [Pg.134]    [Pg.1146]    [Pg.486]    [Pg.745]    [Pg.767]    [Pg.785]    [Pg.799]    [Pg.799]    [Pg.468]    [Pg.167]    [Pg.167]    [Pg.302]   
See also in sourсe #XX -- [ Pg.134 ]




SEARCH



Laterite

Laterite Ore

Laterite Ore

Nickel from lateritic ores

Nickel laterite ores

Nickel production from lateritic/sulfidic ores

© 2024 chempedia.info