Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flexible polyolefin

Flexible polyolefin Cell walls impermeable Fair... [Pg.376]

The blood bag case study illustrates the use of polymeric film as a flexible container. It considers the permeability of polymers, plus processes for fabricating plastics film. Plasticised PVC has dominated the market for years, but there could be a changeover to flexible polyolefin films. The case study on replacement joints for implanting in the body illustrates wear and the effects of wear debris. Research continues on improving the wear resistance of the ultra high molecular weight polyethylene (UHMWPE) and mitigating the effects of sterilisation on the implant properties. [Pg.438]

Elastomeric polypropylenes are being actively studied in academic and industrial laboratories. Some materials are in the pilot developmental stage. Some flexible polyolefins, with moderate elastomeric recovery, are currently being evaluated on a larger scale. Potential applications include fiter, film, and extruded goods. [Pg.776]

Recommended for polymers PVC-flexible, polyolefins, LLDPE, LDEP, HOPE, EVA ... [Pg.17]

Flexomer, Flexible polyolefin copolymers. Union Carbide Corp. [Pg.908]

Resi-Set Phenolic resins for industrial applications, Georgia-Pacific Retain Polyethylene, Dow Rexflex Flexible polyolefin. Huntsman RIMline Polyurethane RIM systems, ICI... [Pg.552]

DSC is specified in USP for the physical testing of PE containers the quality of packaging material is of decisive importance for the protection of raw materials and end products, such as primary packaging material. As shown in Fig. 2.4, unprotected PE samples decompose almost immediately at the test temperature. However, a PE sample containing 0.04% stabiliser remains protected for approximately 16 min at the test temperature, whereas the PE sample containing 0.055% stabiliser is protected for 25 min [151]. The DSC test thus provides a rapid method of screening for the proper AO levels in a polymer. Bharel et al [152] have reported DSC-OIT for performance evaluation of two diamide antioxidants in HDPE and Hakani et al. [153] for the evaluation of oxidative stability of flexible polyolefins (FPO) with the biological y-oryzanol and a-tocopherol antioxidants for food and medical applications. [Pg.170]

Mixed Metal Antimony Synergists Worldwide scarcities of antimony have prompted manufacturers to develop synergists that contain less antimony. Other metals have been found to work in concert with antimony to form a synergist that is as effective as antimony alone. Thermoguard CPA from Elf Atochem NA, which contains zinc in addition to antimony, can be used instead of antimony oxide in flexible poly(vinyl chloride) (PVC) as well as some polyolefin appHcations. The Oncor and AZ products which contain siUcon, zinc, and phosphoms from Anzon Inc. can be used in a similar manner. The mixed metal synergists are 10 to 20% less expensive than antimony trioxide. [Pg.455]

Alumina trihydtate is also used as a secondary flame retardant and smoke suppressant for flexible poly(vinyl chloride) and polyolefin formulations in which antimony and a halogen ate used. The addition of minor amounts of either zinc borate or phosphoms results in the formation of glasses which insulate the unbumed polymer from the flame (21). [Pg.458]

Usage of phosphoms-based flame retardants for 1994 in the United States has been projected to be 150 million (168). The largest volume use maybe in plasticized vinyl. Other use areas for phosphoms flame retardants are flexible urethane foams, polyester resins and other thermoset resins, adhesives, textiles, polycarbonate—ABS blends, and some other thermoplastics. Development efforts are well advanced to find appHcations for phosphoms flame retardants, especially ammonium polyphosphate combinations, in polyolefins, and red phosphoms in nylons. Interest is strong in finding phosphoms-based alternatives to those halogen-containing systems which have encountered environmental opposition, especially in Europe. [Pg.481]

All grades of regular butyl rubber are tacky, rubbery and contain less unsaturation than natural rubber or styrene-butadiene rubber. On the other hand, low molecular weight grades of polyisobutylene are permanently tacky and are clear white semi-liquids, so they can be used as permanent tackifiers for cements, PSAs, hot-melt adhesives and sealants. Low molecular weight polyisobutylenes also provide softness and flexibility, and act as an adhesion promoter for difficult to adhere surfaces (e.g. polyolefins). [Pg.650]

Since 2-hydroxy-4-alkoxybenzophenones are widely used to stabilize polystyrene, flexible and rigid PVC, celluloses, acrylics, and polyolefins such as PE and PP, the polymeric UV stabilizers shown in Table 1 are used with polystyrene, polymethylmethacrylate, and cellulose triacetate (CTA). The polymeric-HALS are used in polyolefins. [Pg.404]

Currently, important TPE s include blends of semicrystalline thermoplastic polyolefins such as propylene copolymers, with ethylene-propylene terepolymer elastomer. Block copolymers of styrene with other monomers such as butadiene, isoprene, and ethylene or ethylene/propy-lene are the most widely used TPE s. Styrene-butadiene-styrene (SBS) accounted for 70% of global styrene block copolymers (SBC). Currently, global capacity of SBC is approximately 1.1 million tons. Polyurethane thermoplastic elastomers are relatively more expensive then other TPE s. However, they are noted for their flexibility, strength, toughness, and abrasion and chemical resistance. Blends of polyvinyl chloride with elastomers such as butyl are widely used in Japan. ... [Pg.358]

Other polyolefins A variety of other crystalline polyolefins are available such as polybutene-1 (improved creep resistance over polyethylene), poly-4-methyl pentene-1 (excellent temperature deformation resistance) and ethylene-vinyl acetate (greater flexibility). [Pg.933]

Ethylene-vinyl acetate EVAs (in the polyolefin family) have exceptional barrier properties, good clarity and gloss, stress-crack resistance, low temperature toughness/retains flexibility, adhesion, resistance to UV radiation, etc. They have low resistance to heat and solvents. [Pg.427]

A route to compatibility involving ionomers has been described recently by Eisenberg and coworkers [250-252]. The use of ionic interactions between different polymer chains to produce new materials has gained tremendous importance. Choudhury et al. [60] reported compatibilization of NR-polyolefin blends with the use of ionomers (S-EPDM). Blending with thermoplastics and elastomers could enhance the properties of MPR. The compatibility of copolyester TPE, TPU, flexible PVC, with MPR in aU proportions, enables one to blend any combination of these plastics with MPR to cost performance balance. Myrick has reported on the effect of blending MPR with various combinations and proportions of these plastics and provided a general guideline for property enhancement [253]. [Pg.149]

Obviously, there exists severe interplastics competition, e.g. PP vs. ABS, clarified PP vs. PS, PA, PVC, HDPE and PS (Table 10.7). A wide range of cross-linked and thermoplastic elastomer applications, from footware to automotive parts and toothbrushes, are adopting new metallocene-catalysed polyolefin elastomers (POEs). These low-density copolymers of ethylene and octene were first accepted as impact modifiers for TPOs, but now displace EPDM, (foamed) EVA, flexible PVC, and olefinic thermoplastic vulcanisates (TPVs). Interpolymer competition may also result from... [Pg.715]

Low-density polyethylene (polythene) is a relatively cheap, tough, flexible plastic. It has a low softening point and is not suitable for use above about 60°C. The higher density polymer (950 kg/m3) is stiffer, and can be used at higher temperatures. Polypropylene is a stronger material than the polyethylenes and can be used at temperatures up to 120°C. The chemical resistance of the polyolefines is similar to that of PVC. [Pg.302]

Films of polyolefins, polyamides and poly(vinylidene dichloride) are made using this technique. As most of the films are used for flexible packaging, further down-stream surface treatments are usually applied to improve performance. For example, aqueous polymer emulsions, e.g., poly(vinylidene dichloride), or delaminated clay particles improve the barrier properties as will metallising with aluminium vapour. Corona discharge, causing slight surface oxidation, improves printability. [Pg.81]

In other halogen-containing systems, such as flexible PVC and polyolefins, it is preferable to use the zinc borate in conjunction with antimony oxide for maximum performance. In flexible PVC, for example, the zinc borate alone is not very effective in the Oxygen Index test (Fig. 6), but a combination of the zinc borate and antimony oxide (1 1 ratio) outperforms equal weight of antimony oxide at a total loading of more than 10 phr (4). In the presence of alumina trihydrate (ATH), the beneficial effect of using a combination of the zinc borate and antimony oxide is dramatically increased (Fig. 7). [Pg.158]

Properties Polyolefin Polyester Rigid Flexible and unfilled... [Pg.1327]

Co-extruded films of polypropylene or other polyolefins and a flexible polyester are solutions for pouches for intravenous drug-delivery systems. [Pg.141]

New polymer structures allow the control of processability and final characteristics. For example, Mitsui is launching nanostructured metallocene alpha-olefins that have a crystallite size of the order of nanometres instead of microns as for conventional metallocene polyolefins. This yields a better balance of transparency, heat resistance, flexibility and elasticity characteristics. Targeted applications are automotive interior trim, packaging film, construction materials, protective films for electronic and optical parts, sealing products and as polymer modifiers. [Pg.843]

Recently Serenyl used a flexible alkaline separator (FAS) in Silver—Zinc cells, which consists of a microporous polyolefin film, with inorganic filler. This can be folded around the silver and/or zinc electrodes to form conventional U wraps or heat sealed bags. They showed that the FAS was not attacked by the electrolyte and helps in inhibiting the shape change of zinc electrode. [Pg.215]


See other pages where Flexible polyolefin is mentioned: [Pg.595]    [Pg.281]    [Pg.53]    [Pg.779]    [Pg.83]    [Pg.595]    [Pg.281]    [Pg.53]    [Pg.779]    [Pg.83]    [Pg.421]    [Pg.214]    [Pg.411]    [Pg.1958]    [Pg.273]    [Pg.506]    [Pg.578]    [Pg.428]    [Pg.153]    [Pg.171]    [Pg.569]    [Pg.108]    [Pg.9]    [Pg.143]    [Pg.408]    [Pg.172]    [Pg.168]    [Pg.311]    [Pg.48]    [Pg.54]   
See also in sourсe #XX -- [ Pg.595 ]




SEARCH



Flexible thermoplastic polyolefin

© 2024 chempedia.info