Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fatty acids abnormal metabolism

Insulin resistance occurs when the normal response to a given amount of insulin is reduced. Resistance of liver to the effects of insulin results in inadequate suppression of hepatic glucose production insulin resistance of skeletal muscle reduces the amount of glucose taken out of the circulation into skeletal muscle for storage and insulin resistance of adipose tissue results in impaired suppression of lipolysis and increased levels of free fatty acids. Therefore, insulin resistance is associated with a cluster of metabolic abnormalities including elevated blood glucose levels, abnormal blood lipid profile (dyslipidemia), hypertension, and increased expression of inflammatory markers (inflammation). Insulin resistance and this cluster of metabolic abnormalities is strongly associated with obesity, predominantly abdominal (visceral) obesity, and physical inactivity and increased risk for type 2 diabetes, cardiovascular and renal disease, as well as some forms of cancer. In addition to obesity, other situations in which insulin resistance occurs includes... [Pg.636]

The citric acid cycle is the final common pathway for the aerobic oxidation of carbohydrate, lipid, and protein because glucose, fatty acids, and most amino acids are metabolized to acetyl-CoA or intermediates of the cycle. It also has a central role in gluconeogenesis, lipogenesis, and interconversion of amino acids. Many of these processes occur in most tissues, but the hver is the only tissue in which all occur to a significant extent. The repercussions are therefore profound when, for example, large numbers of hepatic cells are damaged as in acute hepatitis or replaced by connective tissue (as in cirrhosis). Very few, if any, genetic abnormalities of citric acid cycle enzymes have been reported such ab-normahties would be incompatible with life or normal development. [Pg.130]

After the extraction of lipid and nonlipid components from the leaves of mandarin orange Citrus reticulata, the lipid fraction was further separated by PTLC to determine different lipid classes that affect the chemical deterrence of C. reticulata to the leaf cutting ecat Acromyrmex octopinosus. These lipids seem to be less attractive to the ants [81a]. The metabolism of palmitate in the peripheral nerves of normal and Trembler mice was studied, and the polar lipid fraction purified by PTLC was used to determine the fatty acid composition. It was found that the fatty acid composition of the polar fraction was abnormal, correlating with the decreased overall palmitate elongation and severely decreased synthesis of saturated long-chain fatty acids (in mutant nerves) [81b]. [Pg.320]

Disease state-specific formulations are designed to meet specific nutrient requirements and to manage metabolic abnormalities. Unfortunately, scientific and clinical research supporting their efficacy is minimal, except for low carbohydrate formulations supplemented with specific fatty acids and antioxidants for patients with acute respiratory distress syndrome. Oral supplements are not intended for tube feeding. They are sweetened to improve taste and are therefore hypertonic. [Pg.672]

Abnormal metabolites of fatty acids in urine, which could indicate defects in fat metabolism, can only be detected by gas chromatography or mass spectrometry. These techniques are not routinely available in clinical laboratories. [Pg.146]

Type 2 diabetes is characterized by tissue resistance to the action of insulin combined with a relative deficiency in insulin secretion. A given individual may have more resistance or more beta-cell deficiency, and the abnormalities may be mild or severe. Although insulin is produced by the beta cells in these patients, it is inadequate to overcome the resistance, and the blood glucose rises. The impaired insulin action also affects fat metabolism, resulting in increased free fatty acid flux and triglyceride levels and reciprocally low levels of high-density lipoprotein (HDL). [Pg.929]

Among the different roles previously described, the liver exerts an excretory function, being involved in the formation of bile, which drains into the small intestine. Bile salts in the bile play an important role as emulsifying agents for the reabsorption of lipids and fatty acids from the intestine. Hepatic and obstructive biliary diseases lead to abnormal metabolism of bile acids (BAs). [Pg.607]

Side effects. The common dose-related side effects of valproate include nausea, vomiting and gastrointestinal distress weight gain is frequent (estimated as high as 30%) and may be associated with a drug-induced decrease in the beta oxidation of fatty acids. Sedation is also frequent. Alopecia is an unusual side effect of valproate, possibly caused by an abnormal metabolite. Valproate has a number of metabolically linked side... [Pg.316]

Such imbalanced antioxidant systems in schizophrenia could lead to oxidative stress- and ROS-mediated injury as supported by increased lipid peroxidation products and reduced membrane polyunsaturated fatty acids (PUFAs). Decrease in membrane phospholipids in blood cells of psychotic patients (Keshavan et al., 1993 Reddy et al., 2004) and fibroblasts from drug-naive patients (Mahadik et al., 1994) as well as in postmortem brains (Horrobin et al., 1991) have indeed been reported. It has also been suggested that peripheral membrane anomalies correlate with abnormal central phospholipid metabolism in first-episode and chronic schizophrenia patients (Pettegrewet al., 1991 Yao et al., 2002). Recently, a microarray and proteomic study on postmortem brain showed anomalies of mitochondrial function and oxidative stress pathways in schizophrenia (Prabakaran et al., 2004). Mitochondrial dysfunction in schizophrenia has also been observed by Ben-Shachar (2002) and Altar et al. (2005). As main ROS producers, mitochondria are particularly susceptible to oxidative damage. Thus, a deficit in glutathione (GSH) or immobilization stress induce greater increase in lipid peroxidation and protein oxidation in mitochondrial rather than in cytosolic fractions of cerebral cortex (Liu et al., 1996). [Pg.289]

In known metabolic states and disorders, the nature of metabolites excreted at abnormal levels has been identified by GC-MS. Examples of this are adipic and suberic acids found in urine from ketotic patients [347], 2-hydroxybutyric acid from patients with lactic acidosis [348], and methylcitric acid (2-hydroxybutan-l,2,3-tricarboxylic acid) [349] in a case of propionic acidemia [350,351]. In the latter instance, the methylcitric acid is thought to be due to the condensation of accumulated propionyl CoA with oxaloacetate [349]. Increased amounts of odd-numbered fatty acids present in the tissues of these patients due to the involvement of the propionyl CoA in fatty acid synthesis, have also been characterised [278]. A deficiency in a-methylacetoacetyl CoA thiolase enzyme in the isoleucine pathway prevents the conversion of a-methylacetoacetyl CoA to propionyl CoA and acetyl CoA [352,353]. The resultant urinary excretion of large amounts of 2-hydroxy-3-methylbutanoic acid (a-methyl-/3-hydroxybutyric acid) and an excess of a-methylacetoacetate and often tiglyl glycine are readily detected and identified by GC-MS. [Pg.64]

Spectrum of consequences of defects in fatty acid oxidation. The primary effect is inadequate production of acetyl-CoA, which leads to decreased flux through the TCA cycle and lack of ketone body synthesis in the liver. Both of these events cause energy deficits and changes in metabolic regulatory processes. Alterations in hepatic metabolism lead to hypoglycemia and hyperammonemia. Abnormalities also occur in skeletal and cardiac muscle and in the central nervous system. [Pg.370]


See other pages where Fatty acids abnormal metabolism is mentioned: [Pg.338]    [Pg.302]    [Pg.195]    [Pg.205]    [Pg.569]    [Pg.367]    [Pg.95]    [Pg.702]    [Pg.125]    [Pg.768]    [Pg.86]    [Pg.126]    [Pg.171]    [Pg.114]    [Pg.501]    [Pg.338]    [Pg.188]    [Pg.104]    [Pg.167]    [Pg.131]    [Pg.147]    [Pg.1480]    [Pg.426]    [Pg.113]    [Pg.1463]    [Pg.1469]    [Pg.94]    [Pg.722]    [Pg.653]    [Pg.721]    [Pg.881]    [Pg.8]    [Pg.2209]    [Pg.3]    [Pg.272]   
See also in sourсe #XX -- [ Pg.195 ]




SEARCH



Essential fatty acids abnormal metabolism

Fatty acid metabolization

Fatty acids metabolic

Fatty acids metabolism

Metabolism, abnormal

© 2024 chempedia.info