Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isoleucine pathway

In known metabolic states and disorders, the nature of metabolites excreted at abnormal levels has been identified by GC-MS. Examples of this are adipic and suberic acids found in urine from ketotic patients [347], 2-hydroxybutyric acid from patients with lactic acidosis [348], and methylcitric acid (2-hydroxybutan-l,2,3-tricarboxylic acid) [349] in a case of propionic acidemia [350,351]. In the latter instance, the methylcitric acid is thought to be due to the condensation of accumulated propionyl CoA with oxaloacetate [349]. Increased amounts of odd-numbered fatty acids present in the tissues of these patients due to the involvement of the propionyl CoA in fatty acid synthesis, have also been characterised [278]. A deficiency in a-methylacetoacetyl CoA thiolase enzyme in the isoleucine pathway prevents the conversion of a-methylacetoacetyl CoA to propionyl CoA and acetyl CoA [352,353]. The resultant urinary excretion of large amounts of 2-hydroxy-3-methylbutanoic acid (a-methyl-/3-hydroxybutyric acid) and an excess of a-methylacetoacetate and often tiglyl glycine are readily detected and identified by GC-MS. [Pg.64]

Isoleucine and valine. The first four reactions in the degradation of isoleucine and valine are identical. Initially, both amino acids undergo transamination reactions to form a-keto-/T methyl valerate and a-ketoiso valerate, respectively. This is followed by the formation of CoA derivatives, and oxidative decarboxylation, oxidation, and dehydration reactions. The product of the isoleucine pathway is then hydrated, dehydrogenated, and cleaved to form acetyl-CoA and propionyl-CoA. In the valine degradative pathway the a-keto acid intermediate is converted into propionyl-CoA after a double bond is hydrated and CoA is removed by hydrolysis. After the formation of an aldehyde by the oxidation of the hydroxyl group, propionyl-CoA is produced as a new thioester is formed during an oxidative decarboxylation. [Pg.519]

Methyl-butanol (2MB) is synthesized via the isoleucine pathway (Figure 15.4), which is similar to the valine biosynthesis pathway. One of the challenges for 2MB production is that it passes over the same cassette of genes as in isobutanol production. A recent study [106] indicated that enhancing the citramalate pathway to direct the carbon flux from pyruvate to a-ketobutyrate led 2MB production to about 200 mg 1" with minimum side products such as 1-propanol and isobutanol. [Pg.594]

A second pathway in the production of HMB has also been posmlated through the hydroxylation of methylcrotenoic acid (MCA), but only when biotin is deficient. It is proposed that MCA concentrations become elevated due to the low activity of the biotin-requiring enzyme MC-CoA carboxylase. HMB levels also increase, suggesting that MCA may be hydrated to HMB by enol-CoA hydrase, an enzyme of the isoleucine pathway. However, it is not clear whether MCA is directly converted to HMB during biotin deficiency, or if the rise in HMB is simply a result of feedback inhibition on the various enzymes along the pathway back to KIC. [Pg.222]

Herbicides also inhibit 5- (9/-pymvylshikiniate synthase, a susceptible en2yme in the pathway to the aromatic amino acids, phenylalanine, tyrosine and tryptophan, and to the phenylpropanes. Acetolactate synthase, or acetohydroxy acid synthase, a key en2yme in the synthesis of the branched-chain amino acids isoleucine and valine, is also sensitive to some herbicides. Glyphosate (26), the sulfonylureas (136), and the imida2oles (137) all inhibit specific en2ymes in amino acid synthesis pathways. [Pg.45]

Fatty acids with odd numbers of carbon atoms are rare in mammals, but fairly common in plants and marine organisms. Humans and animals whose diets include these food sources metabolize odd-carbon fatty acids via the /3-oxida-tion pathway. The final product of /3-oxidation in this case is the 3-carbon pro-pionyl-CoA instead of acetyl-CoA. Three specialized enzymes then carry out the reactions that convert propionyl-CoA to succinyl-CoA, a TCA cycle intermediate. (Because propionyl-CoA is a degradation product of methionine, valine, and isoleucine, this sequence of reactions is also important in amino acid catabolism, as we shall see in Chapter 26.) The pathway involves an initial carboxylation at the a-carbon of propionyl-CoA to produce D-methylmalonyl-CoA (Figure 24.19). The reaction is catalyzed by a biotin-dependent enzyme, propionyl-CoA carboxylase. The mechanism involves ATP-driven carboxylation of biotin at Nj, followed by nucleophilic attack by the a-carbanion of propi-onyl-CoA in a stereo-specific manner. [Pg.791]

Isoleucine, another of the twenty amino acids found in proteins, is metabolized by a pathway that includes the following step. Propose a mechanism. [Pg.911]

Three compounds acetoacetate, P-hydroxybutyrate, and acetone, are known as ketone bodies. They are suboxidized metabolic intermediates, chiefly those of fatty acids and of the carbon skeletons of the so-called ketogenic amino acids (leucine, isoleucine, lysine, phenylalanine, tyrosine, and tryptophan). The ketone body production, or ketogenesis, is effected in the hepatic mitochondria (in other tissues, ketogenesis is inoperative). Two pathways are possible for ketogenesis. The more active of the two is the hydroxymethyl glutarate cycle which is named after the key intermediate involved in this cycle. The other one is the deacylase cycle. In activity, this cycle is inferior to the former one. Acetyl-CoA is the starting compound for the biosynthesis of ketone bodies. [Pg.206]

Much was unknown for the halogenation for unreactive substrates until very recently, when the biosynthesis of the cyclopropyl amino acid side chain of coronatine was elucidated. This intriguing pathway, which involves /-chlorination of an enzyme-bound L-isoleucine followed by chloride displacement by the a-carbon, yields the cyclopropanated precursor... [Pg.303]

In the synthesis of propionyl-CoA, the PDC competes with the enzyme of the isoleucine biosynthetic pathway for 2-ketobutyrate (Fig. 3). Since the PDC has a... [Pg.214]

Fig. 3. Generation of propionyl-CoA from the isoleucine biosynthetic pathway. The intermediate 2-ketobutyrate can be decarboxylated by either the 2-oxoacid dehydrogenase complex or at low efficiency by the pyruvate dehydrogenase complex. Inhibition of the threonine deaminase by isoleucine and of the acetolactate synthase by herbicides are indicated with dashed arrows... Fig. 3. Generation of propionyl-CoA from the isoleucine biosynthetic pathway. The intermediate 2-ketobutyrate can be decarboxylated by either the 2-oxoacid dehydrogenase complex or at low efficiency by the pyruvate dehydrogenase complex. Inhibition of the threonine deaminase by isoleucine and of the acetolactate synthase by herbicides are indicated with dashed arrows...
One of the most distinguishing features of metabolic networks is that the flux through a biochemical reaction is controlled and regulated by a number of effectors other than its substrates and products. For example, as already discovered in the mid-1950s, the first enzyme in the pathway of isoleucine biosynthesis (threonine dehydratase) in E. coli is strongly inhibited by its end product, despite isoleucine having little structural resemblance to the substrate or product of the reaction [140,166,167]. Since then, a vast number of related... [Pg.137]

During the biosynthesis of nonribosomal peptides, there are two ways to incorporate the nonprotein amino acids. They can be incorporated either as a single unit or as an L-a-amino acid, which then undergoes structural modifications, while attached to the carrier protein. In the case of coronamic acid, L-rr//o-isoleucine is loaded onto the carrier protein and a unique biosynthetic pathway produces a cyclopropyl group containing a nonprotein amino acid. Specific examples of the biosynthesis of nonprotein amino acids will be discussed in the following sections. [Pg.11]

With the use of gene clusters of the natural products coronatine and kutznerides, the biosynthetic pathway of coronamic acid has also been elucidated by Walsh and coworkers. From the biosynthetic analyses, a nonheme Fe -dependent halogenase was identified as the chlorinating enzyme that converts L- //a-isoleucine to 7-chloroisoleucine. A second enzyme carries out a dehydrochlorination reaction to yield coronamic acid. The general biosynthetic pathway is shown below (Scheme 7). [Pg.12]

Valine, methionine, isoleucine, and threonine are all metabolized through the propionic acid pathway (also used for odd-carbon fatty acids). Defidency of either enzyme results in neonatal ketoacidosis from failure to metabolize ketoacids produced from these four amino adds. The defidendes may be distinguished based on whether meth)dmalonic adduria is present. A diet low in protein or a semisynthetic diet with low amounts of valine, methionine, isoleudne, and threonine is used to treat both deficiencies. [Pg.248]

It was snbseqnently discovered that the first enzyme in the pathway for isoleucine synthesis, which is threonine deaminase, was inhibited by isoleucine in an extract of E. coli. No other amino acid caused inhibition of the enzyme. Threonine deaminase is, in fact, the rate-limiting enzyme in the pathway for isoleucine synthesis, so that this was interpreted as a feedback control mechanism (Fignre 3.13(a)). Similarly it was shown that the hrst enzyme in the pathway for cytidine triphosphate synthesis, which is aspartate transcarbamoylase, was inhibited by cytidine triphosphate (Fignre 3.13(b)). Since the chemical structures of isoleucine and threonine, or cytidine triphosphate and aspartate, are completely different, the qnestion arose, how does isolencine or cytidine triphosphate inhibit its respective enzyme The answer was provided in 1963, by Monod, Changenx Jacob. [Pg.49]

Figure 3.13 (a) Feedback control of a hypothetical pathway. (b) Feedback control of threonine deaminase in the isoleucine synthetic pathway and of aspartate carbamoyltransferase in the cytidine triphosphate synthetic pathway in the bacterium E. coli. [Pg.49]

Capsaicinoids are synthesized by the condensation of vanillylamine with a short chain branched fatty acyl CoA. A schematic of this pathway is presented in Fig. 8.4. Evidence to support this pathway includes radiotracer studies, determination of enzyme activities, and the abundance of intermediates as a function of fruit development [51, 52, 57-63], Differential expression approaches have been used to isolate cDNA forms of biosynthetic genes [64-66], As this approach worked to corroborate several steps on the pathway, Mazourek et al. [67] used Arabidopsis sequences to design primers to clone the missing steps from a cDNA library. They have expanded the schema to include the biosynthesis of the key precursors phenylalanine and leucine, valine and isoleucine. Prior to this study it was not clear how the vanillin was produced, and thus the identification of candidate transcripts on the lignin pathway for the conversion of coumarate to feruloyl-CoA and the subsequent conversion to vanillin provide key tools to further test this proposed pathway. [Pg.118]

Figure 9-4. Metabolism of the branched-chain amino acids. The first two reactions, transamination and oxidative decarboxylation, are catalyzed by the same enzyme in all cases. Details are provided only for isoleucine. Further metabolism of isoleucine and valine follows a common pathway to propionyl CoA. Subsequent steps in the leucine degradative pathway diverge to yield acetoacetate. An intermediate in the pathway is 3-hydroxy-3-methylglutaryl CoA (HMG-CoA), which is a precursor for cytosolic cholesterol biosynthesis. Figure 9-4. Metabolism of the branched-chain amino acids. The first two reactions, transamination and oxidative decarboxylation, are catalyzed by the same enzyme in all cases. Details are provided only for isoleucine. Further metabolism of isoleucine and valine follows a common pathway to propionyl CoA. Subsequent steps in the leucine degradative pathway diverge to yield acetoacetate. An intermediate in the pathway is 3-hydroxy-3-methylglutaryl CoA (HMG-CoA), which is a precursor for cytosolic cholesterol biosynthesis.
From the analytical point of view, it is worth noting the biogenetic pathway of 2-methylbutanoic acid starting from isoleucine [(2S)-amino-(3S)-methylpenta-noic acid]. The (S)-configuration of the precursor is expected to remain but also enzymatic racemisation (by enolisation of the intermediate 2-oxo-3-meth-ylpentanoic acid) is known from the literature. It is not surprising that in some cases 2-methylbutanoic acid is detected as an enantiomeric ratio more or less different from the expected homochiral S enantiomer (Table 17.2) [35-40]. [Pg.390]


See other pages where Isoleucine pathway is mentioned: [Pg.176]    [Pg.848]    [Pg.113]    [Pg.848]    [Pg.232]    [Pg.151]    [Pg.409]    [Pg.584]    [Pg.176]    [Pg.848]    [Pg.113]    [Pg.848]    [Pg.232]    [Pg.151]    [Pg.409]    [Pg.584]    [Pg.45]    [Pg.289]    [Pg.275]    [Pg.662]    [Pg.489]    [Pg.255]    [Pg.105]    [Pg.214]    [Pg.215]    [Pg.215]    [Pg.173]    [Pg.227]    [Pg.242]    [Pg.62]    [Pg.350]    [Pg.613]    [Pg.605]    [Pg.149]    [Pg.86]    [Pg.521]    [Pg.528]    [Pg.565]   
See also in sourсe #XX -- [ Pg.414 ]




SEARCH



Isoleucin

Isoleucinate

Isoleucine

© 2024 chempedia.info