Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fabrication, fiber reinforcement

One approach for fabricating fiber reinforced ceramic matrix composites is the directed oxidation of metals, a process first introduced by Lanxide Corporation [1, 2] and later used successfully to produce turbine engine and aerospace components. Rights to the DIMOX technology, as it was identified, were ultimately acquired by Power Systems Composites, L.L.C., a subsidiary of the Power Systems business of the General Electric Company. [Pg.278]

Clouts RSP (1992) From forest to factory fabrication fiber reinforced cement and concrete. In Swamy RN (ed) Proceedings of the 4th RILEM International Symposium E FN, SPON, Tokyo, 20-23 July, p. 31... [Pg.719]

Since pultrusion is an automatic and continuous process for fabricating fiber reinforced plastics, a proper pulling velocity will optimize production rate and mechanical properties. [Pg.152]

Advanced composites and fiber-reinforced materials are used in sailcloth, speedboat, and other types of boat components, and leisure and commercial fishing gear. A ram id and polyethylene fibers are currentiy used in conveyer belts to collect valuable offshore minerals such as cobalt, uranium, and manganese. Constmction of oil-adsorbing fences made of high performance fabrics is being evaluated in Japan as well as the constmction of other pollution control textile materials for maritime use. For most marine uses, the textile materials must be resistant to biodeterioration and to a variety of aqueous pollutants and environmental conditions. [Pg.73]

Unsaturated polyester resins predominate among fiber-reinforced composite matrices for several reasons. A wide variety of polyesters is available and the composites fabricator must choose the best for a particular appHcation. The choice involves evaluation of fabrication techniques, temperatures at which the resin is to be handled, cure time and temperature desked, and requked cured properties (see Polyesters, unsaturated). [Pg.18]

Ease of cure, easy removal of parts from mold surfaces, and wide availabiHty have made polyesters the first choice for many fiber-reinforced composite molders. Sheet mol ding compound, filament winding, hand lay-up, spray up, and pultmsion are all weU adapted to the use of polyesters. Choosing the best polyester resin and processing technique is often a challenge. The polyester must be a type that is weU adapted to the processing method and must have the final mechanical properties requked by the part appHcation. Table 1 Hsts the deskable properties for a number of fiber-reinforced composite fabrication methods. [Pg.18]

FIG. 10-184 Cost of shop-fabricated tanks in mid-1980 with V4-in walls. Multiplying factors on carbon steel costs for other materials are carbon steel, 1.0 mbber-lined carbon steel, 1.5 alnminnm, 1.6 glass-lined carbon steel, 4.5 and fiber-reinforced plastic, 0.75 to 1.5. Multiplying factors on type 316 stainless-steel costs for other materials are 316 stainless steel, 1.0 Monel, 2.0 Inconel, 2.0 nickel, 2.0 titanium, 3.2 and Hastelloy C, 3.8. Multiplying factors for wall thicknesses different from V4 in are ... [Pg.1021]

Unlike most conventional materials, there is a very close relation between the manufacture of a composite material and its end use. The manufacture of the material is often actually part of the fabrication process for the structural element or even the complete structure. Thus, a complete description of the manufacturing process is not possible nor is it even desirable. The discussion of manufacturing of laminated fiber-reinforced composite materials is restricted in this section to how the fibers and matrix materials are assembled to make a lamina and how, subsequently, laminae are assembled and cured to make a laminate. [Pg.18]

The choice of manufacturing technology for the fabrication of fiber-reinforced plastics or composite materials is intimately related to the performance, economics, and application of the materials. It also depends upon a number of factors, such as component numbers required, item complexity, number of molded surfaces, and type of reinforcement. [Pg.816]

Oxidation of n-hutane to maleic anhydride is becoming a major source for this important chemical. Maleic anhydride could also be produced by the catalytic oxidation of n-butenes (Chapter 9) and benzene (Chapter 10). The principal use of maleic anhydride is in the synthesis of unsaturated polyester resins. These resins are used to fabricate glass-fiber reinforced materials. Other uses include fumaric acid, alkyd resins, and pesticides. Maleic acid esters are important plasticizers and lubricants. Maleic anhydride could also be a precursor for 1,4-butanediol (Chapter 9). [Pg.177]

Lackey, W. J., Review, Status and Future of the CVI Process for Fabrication of Fiber-Reinforced Ceramic Composites, Ceram. Eng. Sci. Proc., 10(7-8) 577-584 (1989)... [Pg.145]

Short-fiber composites fabrication of, 26 766 Short fiber metal-matrix composites, casting process for, 76 168 Short fiber web layering systems, 77 504 Short oil alkyds, 2.T48 Short random fiber reinforcement,... [Pg.835]

Experimental results are presented that show that high doses of electron radiation combined with thermal cycling can significantly change the mechanical and physical properties of graphite fiber-reinforced polymer-matrix composites. Polymeric materials examined have included 121 °C and 177°C cure epoxies, polyimide, amorphous thermoplastic, and semicrystalline thermoplastics. Composite panels fabricated and tested included four-ply unidirectional, four-ply [0,90, 90,0] and eight-ply quasi-isotropic [0/ 45/90]s. Test specimens with fiber orientations of [10] and [45] were cut from the unidirectional panels to determine shear properties. Mechanical and physical property tests were conducted at cold (-157°C), room (24°C) and elevated (121°C) temperatures. [Pg.224]

One typical example of carbon/carbon composite plates is that made by Oak Ridge National Laboratory (ORNL) in the United States [12]. The composite preform was fabricafed by a slurry-molding process from fhe mixed slurry befween short carbon fibers (graphite fibers were also added in some sample plates) and fhe phenolic resin. The mass rafio between fiber reinforcement and phenolic matrix is 4 3. The phenolic matrix improves the mechanical properties and dimensional stability of the plate. A subsequent vacuum molding process was utilized to fabricate composite plates and fluid fields with relatively high resolution (Figure 5.3, [11]). [Pg.317]

Researchers have tried to fabricate plates using many different metals— mainly, stainless steel, aluminum alloys, titanium alloys, nickel alloys, copper alloys, intermetallic alloys, and metal-based composites such as carbon fiber-reinforced aluminum alloys, carbon fiber reinforced copper alloys, etc. [26]. Although Ta, Hf, Nb, Zr, and Ti metals show good corrosion resistance and chemical stability [6], the cost of fhese metals is too high for them to be used as materials in metal plates. That is why relatively cheaper iron-based alloys, particularly stainless steel, have been popularly studied as plate material. In the following secfions, we will infroduce sfainless sfeel (SS) and SS plates, which have been extensively investigated and show promise for the final applications [6,11]. [Pg.326]


See other pages where Fabrication, fiber reinforcement is mentioned: [Pg.349]    [Pg.349]    [Pg.349]    [Pg.349]    [Pg.5]    [Pg.70]    [Pg.73]    [Pg.195]    [Pg.319]    [Pg.85]    [Pg.95]    [Pg.310]    [Pg.321]    [Pg.18]    [Pg.18]    [Pg.156]    [Pg.1188]    [Pg.485]    [Pg.37]    [Pg.253]    [Pg.811]    [Pg.819]    [Pg.146]    [Pg.616]    [Pg.145]    [Pg.77]    [Pg.358]    [Pg.420]    [Pg.122]    [Pg.303]    [Pg.305]    [Pg.133]    [Pg.542]    [Pg.177]    [Pg.262]    [Pg.230]    [Pg.178]   
See also in sourсe #XX -- [ Pg.666 ]




SEARCH



Fabric reinforcement

© 2024 chempedia.info