Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction, solvent solvents, effective

Iron(III) chloride forms numerous addition compounds, especially with organic molecules which contain donor atoms, for example ethers, alcohols, aldehydes, ketones and amines. Anhydrous iron(III) chloride is soluble in, for example, ether, and can be extracted into this solvent from water the extraction is more effective in presence of chloride ion. Of other iron(III) halides, iron(III) bromide and iron(III) iodide decompose rather readily into the +2 halide and halogen. [Pg.394]

Furthermore, the extent to which we can effect a separation depends on the distribution ratio of each species in the sample. To separate an analyte from its matrix, its distribution ratio must be significantly greater than that for all other components in the matrix. When the analyte s distribution ratio is similar to that of another species, then a separation becomes impossible. For example, let s assume that an analyte. A, and a matrix interferent, I, have distribution ratios of 5 and 0.5, respectively. In an attempt to separate the analyte from its matrix, a simple liquid-liquid extraction is carried out using equal volumes of sample and a suitable extraction solvent. Following the treatment outlined in Chapter 7, it is easy to show that a single extraction removes approximately 83% of the analyte and 33% of the interferent. Although it is possible to remove 99% of A with three extractions, 70% of I is also removed. In fact, there is no practical combination of number of extractions or volume ratio of sample and extracting phases that produce an acceptable separation of the analyte and interferent by a simple liquid-liquid extraction. [Pg.544]

Solvent Extraction. Treatment of oil-bearing materials with solvent can effect virtually complete removal of oil from meal. However, the... [Pg.129]

Nitric acid acidulation of phosphate rock produces phosphoric acid, together with dissolved calcium nitrate. Separation of the phosphoric acid for use as an intermediate in other fertilizer processes has not been developed commercially. Solvent extraction is less effective in the phosphoric—nitric system than in the phosphoric—hydrochloric system. Instead, the nitric acid acidulate is processed to produce nitrophosphate fertilizers. [Pg.225]

Fiaal purification of propylene oxide is accompHshed by a series of conventional and extractive distillations. Impurities ia the cmde product iaclude water, methyl formate, acetone, methanol, formaldehyde, acetaldehyde, propionaldehyde, and some heavier hydrocarbons. Conventional distillation ia one or two columns separates some of the lower boiling components overhead, while taking some of the higher boilers out the bottom of the column. The reduced level of impurities are then extractively distilled ia one or more columns to provide a purified propylene oxide product. The solvent used for extractive distillation is distilled ia a conventional column to remove the impurities and then recycled (155,156). A variety of extractive solvents have been demonstrated to be effective ia purifyiag propylene oxide, as shown ia Table 4. [Pg.139]

Several solvent uses have been proposed. Dimethyl sulfate has been used as a solvent for the study of Lewis acid—aromatic hydrocarbon complexes (148). It also is effective as an extraction solvent to separate phosphoms haUde—hydrocarbon mixtures and aromatic hydrocarbons from aUphatics, and it acts as an electrolyte in electroplating iron (149—152). The toxicity of dimethyl sulfate precludes its use as a general-purpose solvent. [Pg.203]

Solvent Extraction. Solvent extraction has widespread appHcation for uranium recovery from ores. In contrast to ion exchange, which is a batch process, solvent extraction can be operated in a continuous countercurrent-fiow manner. However, solvent extraction has a large disadvantage, owing to incomplete phase separation because of solubihty and the formation of emulsions. These effects, as well as solvent losses, result in financial losses and a potential pollution problem inherent in the disposal of spent leach solutions. For leach solutions with a concentration greater than 1 g U/L, solvent extraction is preferred. For low grade solutions with <1 g U/L and carbonate leach solutions, ion exchange is preferred (23). Solvent extraction has not proven economically useful for carbonate solutions. [Pg.317]

Solvent Effects m Extractive Distillation In the distillation of ideal or nonazeotropic mixtures, the component with the lowest pure-component boihng point is always recovered primarily in the distillate, while the highest boiler is recovered primarily in the bottoms. The situation is not as straightforward for an extractive-distillation operation. With some solvents, the component with the lower pure-component boiling point wih be recovered in the distillate as in ordinaiy distillation. For another solvent, the expected order is reversed, and the component with the higher pure-component boiling point wih be... [Pg.1314]

FIG. 15-8 Effect of temperature on ternary liquid-liqmd equilibrium. A feed solvent, B = solute, and S = extraction solvent. [Pg.1451]

Microwave extraction realized at 120 °C for 30 min with Hexane -Acetone (3 2 V/V) as the extraction solvent was identified as the most effective extraction procedure for isolation of TPH from biotic matrices. The aim of this research is to develop a silica gel and alumina fractionation procedure for plant sample extraction. Column chromatography with two solvents (chloroform and hexane dichloromethane) as a mobile phase were used for clean-up of extract. In this research the efficiency of recovery received from chloroform as a mobile phase. [Pg.270]

All PVC plasticisers have a solubility parameter similar to that of PVC. It appears that differences between liquids in their plasticising behaviour is due to differences in the degree of interaction between polymer and plasticiser. Thus such phosphates as tritolyl phosphate, which have a high degree of interaction, gel rapidly with polymer, are more difficult to extract with solvents and give compounds with the highest brittle point. Liquids such as dioctyl adipate, with the lowest interaction with polymer, have the converse effect whilst the phthalates, which are intermediate in their degree of interaction, are the best allround materials. [Pg.330]

One of the most widely established processes using SCCO2 is the decaffeination of coffee. Prior to widespread use of this process in the 1980s the preferred extraction solvent was dichloromethane. The potential adverse health effects of chlorinated materials were realized at this time and, although there was no direct evidence of any adverse health effects being caused by any chlorinated residues in decaffeinated coffee there was always the risk, highlighted in some press scare stories. Hence the current processes offer health, environmental and economic advantages. [Pg.138]

Until this point, the sample preparation techniques under discussion have relied upon differences in polarity to separate the analyte and the sample matrix in contrast, ultraflltration and on-line dialysis rely upon differences in molecular size between the analyte and matrix components to effect a separation. In ultrafiltration, a centrifugal force is applied across a membrane filter which has a molecular weight cut-off intended to isolate the analyte from larger matrix components. Furusawa incorporated an ultrafiltration step into his separation of sulfadimethoxine from chicken tissue extracts. Some cleanup of the sample extract may be necessary prior to ultrafiltration, or the ultrafiltration membranes can become clogged and ineffective. Also, one must ensure that the choice of membrane filter for ultrafiltration is appropriate in terms of both the molecular weight cut-off and compatibility with the extraction solvent used. [Pg.310]

For pesticide residue immunoassays, matrices may include surface or groundwater, soil, sediment and plant or animal tissue or fluids. Aqueous samples may not require preparation prior to analysis, other than concentration. For other matrices, extractions or other cleanup steps are needed and these steps require the integration of the extracting solvent with the immunoassay. When solvent extraction is required, solvent effects on the assay are determined during assay optimization. Another option is to extract in the desired solvent, then conduct a solvent exchange into a more miscible solvent. Immunoassays perform best with water-miscible solvents when solvent concentrations are below 20%. Our experience has been that nearly every matrix requires a complete validation. Various soil types and even urine samples from different animals within a species may cause enough variation that validation in only a few samples is not sufficient. [Pg.647]

Some agrochemicals bind strongly to the soil component as bound residues, which cannot be extracted without vigorous extraction procedures. In this case, an acidic (e.g., hydrochloric acid, sulfuric acid) or alkaline solution (e.g., sodium hydroxide, potassium hydroxide) can be used as an extraction solvent, and also heating may be effective in improving the extraction of the residues. Analytical procedures after the extraction are the same as above, but a filtration procedure may be troublesome in some of these situations. However, these procedures are rare exceptions or are needed for specific chemicals that are stable under such harsh extraction conditions. [Pg.905]

The extraction rate of mepanipyrim with refluxing was higher than that with shaking (30 min) and sonication (Ultrasonic, 600 W, 28 kHz, 30 min). For the solvent system, acetone and acetonitrile showed almost similar extraction efficiencies. Methanol was found to be a less effective extraction solvent. Mepanipyrim was unstable in the acidic solution and alkaline solution under reflux conditions at 80 °C. The extraction rate of mepanipyrim under these conditions decreased to about 50% and 20%, respectively. Therefore, neutral solution was used as the extraction solvent in this method. [Pg.1227]

Solvent degassing (LC) 553 Solvent demixing (TLC) 660 Solvent effects, splitless injection (GC) 250 Solvent extraction 753 applications 766 hoBogenizer 761 i plitgers 756 micTMethods 764 microwave 761 optimization 753 shake flask 761 solvent reduction 763 Soxhlet 762 Solvent (LC)... [Pg.517]

Improved Methods for Collection, Bioassay, Isolation, and Characterization of Compounds. Techniques used to characterize natural products are evolving rapidly as more sophisticated instrumentation is developed. Plant physiologists and chemists should work closely together on this aspect, since rapid and reproducable bioassays are essential at each step. There is no standard technique that will work effectively for every compound. Briefly, isolation of a compound involves extraction or collection in a appropriate solvent or adsorbant. Commonly used extraction solvents for plants are water or aqueous methanol in which either dried or live plant parts are soaked. After extracting the material for varying lengths of time, the exuded material is filtered or centrifuged before bioassay. Soil extraction is more difficult, since certain solvents (e.g. bases) may produce artifacts. [Pg.4]

PFE is based on the adjustment of known extraction conditions of traditional solvent extraction to higher temperatures and pressures. The main reasons for enhanced extraction performance at elevated temperature and pressure are (i) solubility and mass transfer effects and (ii) disruption of surface equilibria [487]. In PFE, a certain minimum pressure is required to maintain the extraction solvent in the liquid state at a temperature above the atmospheric boiling point. High pressure elevates the boiling point of the solvent and also enhances penetration of the solvent into the sample matrix. This accelerates the desorption of analytes from the sample surface and their dissolution into the solvent. The final result is improved extraction efficiency along with short extraction time and low solvent requirements. While pressures well above the values required to keep the extraction solvent from boiling should be used, no influence on the ASE extraction efficiency is noticeable by variations from 100 to 300 bar [122]. [Pg.117]


See other pages where Extraction, solvent solvents, effective is mentioned: [Pg.692]    [Pg.317]    [Pg.82]    [Pg.154]    [Pg.57]    [Pg.60]    [Pg.189]    [Pg.1240]    [Pg.1318]    [Pg.1448]    [Pg.1449]    [Pg.1451]    [Pg.1464]    [Pg.224]    [Pg.336]    [Pg.154]    [Pg.338]    [Pg.416]    [Pg.1153]    [Pg.64]    [Pg.66]    [Pg.81]    [Pg.88]    [Pg.90]    [Pg.104]    [Pg.105]    [Pg.106]    [Pg.113]    [Pg.115]    [Pg.118]    [Pg.118]   
See also in sourсe #XX -- [ Pg.187 ]




SEARCH



Application of Regular Solution Theory—Solvent Effect on the Extraction Equilibria

Effect of solvent extraction

Extractants effect

Extraction effectiveness

Extraction equilibria solvent effect

Extractive effect

Solvent Effects in Extractive Distillation

Solvent extraction processes oxidation state, effect

Tetrad effect solvent extraction

© 2024 chempedia.info