Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation acceptable

Except for the embryo and fetal development component in rabbits, the components described above can be combined into fewer, larger studies instead of conducting each component separately. Acceptable alternatives include the single-study design and two-study design. The choice may be made based on when study results are needed (how soon are females to be incorporated in clinical studies) and compound availability. [Pg.266]

Porosity. It is implicit in the permeability requirement typically lithium-ion battery separators have a porosity of 40%. Control of porosity is very important for battery separators. Specification of percent porosity is commonly an integral part of separator acceptance criteria. [Pg.189]

The RPD calculated for pairs of identical environmental samples (field duplicates) is the measure of total sampling and analysis precision, which combines the precision of sampling, sample handling, and the precision of sample preparation and analysis. Precision of field duplicates may be significantly affected by matrix interferences and by inherent sample variability. That is why the SAP should make a distinction between analytical precision determined from LCS/LCSD pairs and total sampling and analysis precision determined from field duplicate pairs and adopt separate acceptance criteria for each. [Pg.40]

After implementation of the change (in the operation environment) the system owner should formally accept the change. This formal approval can be made based upon the test results, or the system owner might decide to perform some separate acceptance test. [Pg.83]

The second phase is the determination of the number or percentage of true positive results achieved with the test in a population of animals that have been dosed with the compound of interest. This is an essential phase in the development of residue methods and the rigorous assessment of the true positive rate requires confirmation by a separate accepted assay method(s). In addition, part of this study may need to be performed under field conditions, particularly if the test is intended to be used in a non-laboratory environment. [Pg.34]

In the case of column chromatographic techniques, the separated " Tc impurities are detected indirectly, after separation, accepting incomplete sample recovery. Some components of a Tc pharmaceutical remain on the column. In fact, reduced, hydro-lized " Tc activity is commonly retained on the column. [Pg.136]

Knowledge of precision and bias is important if acceptance criteria are to be established. Confidence in the values obtained is necessary when a test is used to separate acceptable and unacceptable material. Generally, the establishment of acceptance criteria requires extensive testing of the product forms of interest. [Pg.771]

Shutdown systems have a separate acceptance criterion. Modem PHWRs have two independent, redundant and diverse shutdown systems with separate logic and reactivity devices from the control system and from each other [5]. Each system, on its own, must be capable of shutting the reactor down after any accident, independently of the mitigation provided by the normal reactivity control devices. In general, two diverse trip parameters are required on each shutdown system for each accident over the range of operating conditions (unless it is impracticable or detrimental to safety to provide dual parameter coverage). As a result, it is not required to perform analysis of either transients or accidents without shutdown [6],... [Pg.18]

Ideally, the K value for the light key component in the phase separation should be greater than 10, and at the same time, the K value for the heavy key should be less than 0.1. Having such circumstances leads to a good separation in a single stage. However, use of phase separators might still be effective in the flowsheet if the K values for the key components are not so extreme. Under such circumstances a more crude separation must be accepted. [Pg.107]

Sometimes it is extremely difficult to avoid vapor recycles without using very high pressures or very low levels of refrigeration, in which case we must accept the expense of a recycle compressor. However, when synthesizing the separation and recycle configuration, vapor recycles should be avoided, if possible, and liquid recycles used instead. [Pg.115]

In the first step, a screening process will be applied to separate the major potential hazards these will be addressed in more detail. QRA techniques are used to evaluate the extent of the risk arising from hazards with the potential to cause major accidents, based on the prediction of the likelihood and magnitude of the event. This assessment will be based on engineering judgement and statistics of previous performance. Where necessary, risk reduction measures will be applied until the level of risk is acceptable. This of course is an emotive subject, since it implies placing a value on human life. [Pg.69]

A somewhat subtle point of difficulty is the following. Adsorption isotherms are quite often entirely reversible in that adsorption and desorption curves are identical. On the other hand, the solid will not generally be an equilibrium crystal and, in fact, will often have quite a heterogeneous surface. The quantities ys and ysv are therefore not very well defined as separate quantities. It seems preferable to regard t, which is well defined in the case of reversible adsorption, as simply the change in interfacial free energy and to leave its further identification to treatments accepted as modelistic. [Pg.352]

The extensive use of the Young equation (Eq. X-18) reflects its general acceptance. Curiously, however, the equation has never been verified experimentally since surface tensions of solids are rather difficult to measure. While Fowkes and Sawyer [140] claimed verification for liquids on a fluorocarbon polymer, it is not clear that their assumptions are valid. Nucleation studies indicate that the interfacial tension between a solid and its liquid is appreciable (see Section K-3) and may not be ignored. Indirect experimental tests involve comparing the variation of the contact angle with solute concentration with separate adsorption studies [173]. [Pg.372]

Boron trioxide is not particularly soluble in water but it slowly dissolves to form both dioxo(HB02)(meta) and trioxo(H3B03) (ortho) boric acids. It is a dimorphous oxide and exists as either a glassy or a crystalline solid. Boron trioxide is an acidic oxide and combines with metal oxides and hydroxides to form borates, some of which have characteristic colours—a fact utilised in analysis as the "borax bead test , cf alumina p. 150. Boric acid. H3BO3. properly called trioxoboric acid, may be prepared by adding excess hydrochloric or sulphuric acid to a hot saturated solution of borax, sodium heptaoxotetraborate, Na2B407, when the only moderately soluble boric acid separates as white flaky crystals on cooling. Boric acid is a very weak monobasic acid it is, in fact, a Lewis acid since its acidity is due to an initial acceptance of a lone pair of electrons from water rather than direct proton donation as in the case of Lowry-Bronsted acids, i.e. [Pg.148]

Note A molecular dynamics sim u lation cannot overcome con -strain is imposed by covalent bonds, such as disulfide bonds and rings. Check that such constraints are acceptable. Search other possible structures in separate simulations. [Pg.78]

In aqueous solution at 100° the change is reversible and equilibrium is reached when 95 per cent, of the ammonium cyanate has changed into urea. Urea is less soluble in water than is ammonium sulphate, hence if the solution is evaporated, urea commences to separate, the equilibrium is disturbed, more ammonium cyanate is converted into urea to maintain the equilibrium and evfflitually the change into urea becomes almost complete. The urea is isolated from the residue by extraction with boiling methyl or ethyl alcohol. The mechanism of the reaction which is generally accepted involves the dissociation of the ammonium cyanate into ammonia and cyanic acid, and the addition of ammonia to the latter ... [Pg.441]

The relationship of the selectivity of an electrophile to its reactivity is a separate issue, because the above quantitative correlations of reactivity can be used empirically, without accepting that they allow comment about the reactivity of electrophiles. There is no direct evidence for the view that differences in the selectivities of electrophiles are related in a simple way to their different reactivities. Indeed, it is difficult to grasp the meaning of comparisons attempted between electrophiles of very different structures, which bring about reaction under disparate conditions by different mechanisms. [Pg.143]

Individual ammo acids differ m their acid-base properties This is important m peptides and proteins where the properties of the substance depend on its ammo acid constituents especially on the nature of the side chains It is also important m analyses m which a complex mixture of ammo acids is separated into its components by taking advantage of the differences m their proton donating and accepting power... [Pg.1119]

Furthermore, the extent to which we can effect a separation depends on the distribution ratio of each species in the sample. To separate an analyte from its matrix, its distribution ratio must be significantly greater than that for all other components in the matrix. When the analyte s distribution ratio is similar to that of another species, then a separation becomes impossible. For example, let s assume that an analyte. A, and a matrix interferent, I, have distribution ratios of 5 and 0.5, respectively. In an attempt to separate the analyte from its matrix, a simple liquid-liquid extraction is carried out using equal volumes of sample and a suitable extraction solvent. Following the treatment outlined in Chapter 7, it is easy to show that a single extraction removes approximately 83% of the analyte and 33% of the interferent. Although it is possible to remove 99% of A with three extractions, 70% of I is also removed. In fact, there is no practical combination of number of extractions or volume ratio of sample and extracting phases that produce an acceptable separation of the analyte and interferent by a simple liquid-liquid extraction. [Pg.544]

The relationship between capacity factor and analysis time can be advantageous when a separation produces an acceptable resolution with a large b. In this case it may be possible to decrease b with little loss in resolution while significantly shortening the analysis time. [Pg.557]

The design of a collaborative test must provide the additional information needed to separate the effect of random error from that due to systematic errors introduced by the analysts. One simple approach, which is accepted by the Association of Official Analytical Chemists, is to have each analyst analyze two samples, X and Y, that are similar in both matrix and concentration of analyte. The results obtained by each analyst are plotted as a single point on a two-sample chart, using the result for one sample as the x-coordinate and the value for the other sample as the -coordinate. ... [Pg.688]

The efficiency of separation of solvent from solute varies with their nature and the rate of flow of liquid from the HPLC into the interface. Volatile solvents like hexane can be evaporated quickly and tend not to form large clusters, and therefore rates of flow of about 1 ml/min can be accepted from the HPLC apparatus. For less-volatile solvents like water, evaporation is slower, clusters are less easily broken down, and maximum flow rates are about 0.1-0.5 ml/min. Because separation of solvent from solute depends on relative volatilities and rates of diffusion, the greater the molecular mass difference between them, the better is the efficiency of separation. Generally, HPLC is used for substances that are nonvolatile or are thermally labile, as they would otherwise be analyzed by the practically simpler GC method the nonvolatile substances usually have molecular masses considerably larger than those of commonly used HPLC solvents, so separation is good. [Pg.79]

A hexapole assembly is incapable of separating ions according to their m/z values. However, it is capable of accepting an ion beam and ensuring that the beam is kept as narrow as possible and remains on a straight-line track. [Pg.403]


See other pages where Separation acceptable is mentioned: [Pg.244]    [Pg.421]    [Pg.70]    [Pg.105]    [Pg.244]    [Pg.421]    [Pg.70]    [Pg.105]    [Pg.159]    [Pg.709]    [Pg.1432]    [Pg.2412]    [Pg.500]    [Pg.228]    [Pg.318]    [Pg.461]    [Pg.251]    [Pg.102]    [Pg.189]    [Pg.36]    [Pg.278]    [Pg.96]    [Pg.204]    [Pg.558]    [Pg.580]    [Pg.617]    [Pg.317]    [Pg.123]   
See also in sourсe #XX -- [ Pg.170 ]




SEARCH



© 2024 chempedia.info