Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons aromatic acids

Identification of Aromatic Hydrocarbons. Picric acid combines with many aromatic hydrocarbons, giving addition products of definite m.p. Thus with naphthalene it gives yellow naphthalene picrate, C oHg,(N08)jCeHiOH, m.p. 152°, and with anthracene it gives red anthracene picrate, C 4Hio,(NOj)jCeHjOH, m.p. 138 . For practical details, see p. 394. [Pg.174]

Almost insoluble in cold water. Higher alcohols (including benzyl alcohol), higher phenols (e.g., naphthols), metaformaldehyde, paraldehyde, aromatic aldehydes, higher ketones (including acetophenone), aromatic acids, most esters, ethers, oxamide and domatic amides, sulphonamides, aromatic imides, aromatic nitriles, aromatic acid anhydrides, aromatic acid chlorides, sulphonyl chlorides, starch, aromatic amines, anilides, tyrosine, cystine, nitrocompounds, uric acid, halogeno-hydrocarbons, hydrocarbons. [Pg.404]

Unlike aliphatic hydrocarbons, aromatic hydrocarbons can be sul-phonated and nitrated they also form characteristic molecular compounds with picric acid, styphnic acid and 1 3 5-trinitrobenzene. Many of the reactions of aromatic hydrocarbons will be evident from the following discussion of crystalline derivatives suitable for their characterisation. [Pg.518]

NITRATION OF AROMATIC HYDROCARBONS Aromatic hydrocarbons may be nitrated, i.e., the hydrogen atoms replaced by nitro (NOj) groups, with concentrated nitric acid in the presence of concentrated sulpliuric acid, for example ... [Pg.523]

SULPHONATION OF AROMATIC HYDROCARBONS Aromatic hydrocarbons may be mono-sulphonated by heating with a slight excess of concentrated sulphuric acid for benzene, oleum (7-8 per cent. SOj) gives somewhat better results. The reaction is usually complete when all the hydrocarbon has dissolved. Examples are ... [Pg.548]

Typical nonsieve, polar adsorbents are siUca gel and activated alumina. Kquilihrium data have been pubUshed on many systems (11—16,46,47). The order of affinity for various chemical species is saturated hydrocarbons < aromatic hydrocarbons = halogenated hydrocarbons < ethers = esters = ketones < amines = alcohols < carboxylic acids. In general, the selectivities are parallel to those obtained by the use of selective polar solvents in hydrocarbon systems, even the magnitudes are similar. Consequendy, the commercial use of these adsorbents must compete with solvent-extraction techniques. [Pg.292]

Acylation. Aryl chloroformates are good acylating agents, reacting with aromatic hydrocarbons under Eriedel-Crafts conditions to give the expected aryl esters of the aromatic acid (38). [Pg.39]

Torlon-type polymers are unaffected by aliphatic, aromatic, chlorinated and fluorinated hydrocarbons, dilute acids, aldehydes, ketones, ethers and esters. Resistance to alkalis is poor. They have excellent resistance to radiation. If a total of 10 Mrad is absorbed at a radiation dosage of 1 Mrad/h the tensile strength decreases by only 5%. [Pg.524]

If a substituted aromatic hydrocarbon is used, the ketone gioLip then enteis the paia-position, or, if this is occupied, the oitho-position. Substituted aromatic acid chlorides may. also be used, and if the acid is dibasic and has two caiboxyl chloiide gioups, two molecules of the aromatic hydiocaibon may be. attached. If phosgene is used with two molecules of benzene, benzophenone is obtained. [Pg.309]

There is a synthesis, which is supposed to be safe and consists in using very small quantities of reagents and closely monitoring the temperature. However, the thermai control of the aromatic hydrocarbons/nitric acid reaction usually proves to be very difficult. Indeed, the temperature is either too high and the reaction is out of controi and can lead to detonation, or too low and the nitration or oxidation takes place too slowly causing the compounds to accumulate and the reaction to be delayed. The consequences are the same as before. [Pg.245]

FIGURE 15.1 Scheme showing PLC group fractionation of soluble organic matter into fractions of aliphatic hydrocarbons, aromatic compounds with application of urea clathra-tion, and methylation of carboxylic acids in polar fractions based on experimental data given in Reference 36 to Reference 52, Reference 77 to Reference 81, and Reference 88 to Reference 89. [Pg.375]

The compounds implicated in allelopathy have been divided into chemical classes by recent reviewers (4, 20). They can be arbitrarily classed as (A) hydrocarbons, (B) organic acids and aldehydes, (C) aromatic acids, (D) simple unsaturated lactones,... [Pg.3]

The solubility of most metals is much higher when they exist as organometallic complexes.4445 Naturally occurring chemicals that can partially complex with metal compounds and increase the solubility of the metal include aliphatic acids, aromatic acids, alcohols, aldehydes, ketones, amines, aromatic hydrocarbons, esters, ethers, and phenols. Several complexation processes, including chelation and hydration, can occur in the deep-well environment. [Pg.799]

From elution chromatography, the percentage of aliphatic hydrocarbons, aromatic hydrocarbons and polar compounds were obtained. The percentage of polar compounds in the oil decreased as the catalyst concentration increased (see Figure 1) with mainly an increase in the percentage of aromatic hydrocarbons. There was also a decrease in the percentage of both acids and bases in the oil as the catalyst concentration increases as shown in Figure 1. [Pg.272]

Aromatic hydrocarbons, Hydrogen peroxide See Hydrogen peroxide Aromatic hydrocarbons, Trifluoroacetic acid... [Pg.255]

The most commonplace substrates in energy-transfer analytical CL methods are aryl oxalates such as to(2,4,6-trichlorophenyl) oxalate (TCPO) and z s(2,4-dinitrophenyl) oxalate (DNPO), which are oxidized with hydrogen peroxide [7, 8], In this process, which is known as the peroxyoxalate-CL (PO-CL) reaction, the fluorophore analyte is a native or derivatized fluorescent organic substance such as a polynuclear aromatic hydrocarbon, dansylamino acid, carboxylic acid, phenothiazine, or catecholamines, for example. The mechanism of the reaction between aryl oxalates and hydrogen peroxide is believed to generate dioxetane-l,2-dione, which may itself decompose to yield an excited-state species. Its interaction with a suitable fluorophore results in energy transfer to the fluorophore, and the subsequent emission can be exploited to develop analytical CL-based determinations. [Pg.179]

Two structures are possible for the interaction of aromatic hydrocarbons with acids.270 In the a-structures a covalent bond is established between the acidic reagent and a particular carbon atom of the benzene ring. The a-structures are essentially classical carbonium ions. In the -structures a non-classical bond is established, not to any particular atom, but to the -electron cloud in general. It is quite likely that both types of structure are represented by actual examples. Thus m-xylene interacts more strongly with hydrogen chloride than does o-xylene, but the difference between the two hydrocarbons is much more pronounced when their interactions with a boron trifluoride-hydrogen fluoride mixture are compared. This is readily understandable... [Pg.141]

Solvents can be classified into three categories according to their polarity namely, polar protic, dipolar aprotic and non-polar. Most of the common solvents fall under one of following chemical classes Aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, phenols, ethers, aldehydes, ketones, carboxylic acids, esters, halogen-substituted hydrocarbons, amines, nitriles, nitro-derivatives, amides and sulfur-containing solvents (Marcus, 1998). In certain cases a mixture of two or more solvents would perform better than a single solvent. [Pg.116]

Thus, transition metal cations in the lower valence state may also act as Lewis bases. Factors that affect the reactions promoted by Lewis acidity are listed in Table I. Lewis acid sites reversibly adsorb water (6s 9, 42), which may thus strongly compete with organic compounds that have weaker Lewis base properties, such as aromatic hydrocarbons. Lewis acidity depends on the degree of hydration and is strongest under desiccating conditions. Examples of reactions that are promoted by Lewis acidity are summarized in Table II. Other examples have been reviewed by Solomon and Howthorne (37). [Pg.464]

Aromatic hydrocarbons, Trifluoromethanesulfonic acid See Trifluoromethanesulfonic acid Acyl chlorides, etc. [Pg.26]

The prediction of retention times in a given eluent from log P has been proposed for aromatic hydrocarbons.19 The log A values of phenols21 and nitrogen-containing compounds22 were also related to their logP, and the calculated log P was used for the qualitative analysis of urinary aromatic acids, i.e. for the identification of metabolites in urine from the differences of log P in reversed-phase liquid chromatography.23,24... [Pg.111]

Resistance is limited to aldehydes, ketones, aromatic and halogenated hydrocarbons, weak acids and bases, and dilute strong bases. [Pg.458]

Leibman, C.P. Todd, P.J. Mamantov, G. Enhanced Positive Secondary Ion Emission From Substituted Polynuclear Aromatic Hydrocarbon/Sulfuric Acid Solutions. Org. Mass Spectrom. 1988, 25, 634-642. [Pg.406]

In comparison with hydrocarbons, aromatic amines easily transform into cation radicals. Structures of these cation radicals are well documented on the basis of their ESR spectra and MO calculations (see, e.g., Grampp et al. 2005). The stable cation radical of A/,A,A, A -tetramethyl-p-phenylenediamine (the so-called Wuerster s blue) was one of the first ion radicals that was studied by ESR spectroscopy (Weissmann et al. 1953). The use of this cation radical as a spin-containing unit for high-spin molecules has been reported (Ito et al. 1999). Chemical oxidation of N,N -bis [4-(dimethylamino)-phenyl-A/,A -dimethyl-l,3-phenylenediamine with thianthrenium perchlorate in -butyronitrile in the presence of trifluoroacetic acid at 78°C led to the formation of the dication diradical depicted in Scheme 3.58. [Pg.178]

A mammal may emit many volatile compounds. Humans, for instance, give off hundreds of volatiles, many of them chemically identified (Ellin etal., 1974). The volatiles include many classes of compound such as acids (gerbil), ketones, lactones, sulfides (golden hamster), phenolics (beaver, elephant), acetates (mouse), terpenes (elephant), butyrate esters (tamarins), among others. The human samples mentioned before contained hydrocarbons, unsaturated hydrocarbons, alcohols, acids, ketones, aldehydes, esters, nitriles, aromatics, heterocyclics, sulfur compounds, ethers, and halogenated hydrocarbons. Sulfur compounds are found in carnivores, such as foxes, coyotes, or mustelids. The major volatile compound in urine of female coyotes, Canis latrans, is methyl 3-methylhut-3-enyl sulfide, which accounts for at least 50% of all urinary volatiles (Schultz etal, 1988). [Pg.23]

Argenlalion chromalography, 261 Aromatic acids in human urine, 285 Aromatic hydrocarbons, 69 Arylhydroxylamines, 298 Ascorbic acid, 296 Aspirin, 282 Asymmetric diens, 290 Asymmetrical peaks, 58, 82, 160 AIT, stability constants of metal complexes. 278 Atrazine, 292 Atropine, 297 Axial diffusion mobile phase. 8 stationary phase, 8,9 Aza-arenes, 293 Azoxybenzenes, 298... [Pg.164]


See other pages where Hydrocarbons aromatic acids is mentioned: [Pg.80]    [Pg.80]    [Pg.315]    [Pg.461]    [Pg.310]    [Pg.605]    [Pg.184]    [Pg.200]    [Pg.491]    [Pg.380]    [Pg.1630]    [Pg.17]    [Pg.125]    [Pg.139]    [Pg.66]    [Pg.259]    [Pg.365]    [Pg.81]    [Pg.457]   
See also in sourсe #XX -- [ Pg.139 , Pg.195 ]




SEARCH



Hydrocarbons acids

© 2024 chempedia.info