Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene-propylene-diene-monomer polyethylene

At this point in the process, thermoplastic and chlorosulfonated polyethylene (CSPE) membranes are complete and are ready for packaging. In the case of ethylene—propylene—diene monomer (EPDM), the curing step occurs before the membrane is ready for packaging. The curing process is accomphshed by placing the membrane in a large vulcanizer where the material is heated under pressure to complete the cure. [Pg.213]

TPEs from blends of rubber and plastics constitute an important category of TPEs. These can be prepared either by the melt mixing of plastics and rubbers in an internal mixer or by solvent casting from a suitable solvent. The commonly used plastics and rubbers include polypropylene (PP), polyethylene (PE), polystyrene (PS), nylon, ethylene propylene diene monomer rubber (EPDM), natural rubber (NR), butyl rubber, nitrile rubber, etc. TPEs from blends of rubbers and plastics have certain typical advantages over the other TPEs. In this case, the required properties can easily be achieved by the proper selection of rubbers and plastics and by the proper change in their ratios. The overall performance of the resultant TPEs can be improved by changing the phase structure and crystallinity of plastics and also by the proper incorporation of suitable fillers, crosslinkers, and interfacial agents. [Pg.634]

ATBN - amine terminated nitrile rubber X - Flory Huggins interaction parameter CPE - carboxylated polyethylene d - width at half height of the copolymer profile given by Kuhn statistical segment length DMAE - dimethyl amino ethanol r - interfacial tension reduction d - particle size reduction DSC - differential scanning calorimetry EMA - ethylene methyl acrylate copolymer ENR - epoxidized natural rubber EOR - ethylene olefin rubber EPDM - ethylene propylene diene monomer EPM - ethylene propylene monomer rubber EPR - ethylene propylene rubber EPR-g-SA - succinic anhydride grafted ethylene propylene rubber... [Pg.682]

FIGURE 11,1 Ultrasonic velocity versus acrylonitrile-butadiene mbber/ethylene-propylene-diene monomer (NBR-EPDM) blend composition (a) no compatibiUzer, (b) with chloro-sulfonated polyethylene (CSM), and (c) with chlorinated polyethylene (CM). (From Pandey, K.N., Setua, D.K., and Mathur, G.N., Polym. Eng. Set, 45, 1265, 2005.)... [Pg.305]

The ductility of GRT-polyethylene blends drastically decreases at ground rubber concentration in excess of 5%. The inclusion of hnely ground nitrile rubber from waste printing rollers into polyvinyl chloride (PVC) caused an increase in the impact properties of the thermoplastic matrix [76]. Addition of rubber powder that is physically modihed by ultrasonic treatment leads to PP-waste ethylene-propylene-diene monomer (EPDM) powder blends with improved morphology and mechanical properties [77]. [Pg.1050]

When ethylene is copolymerized with substantial amounts (>25%) of propylene an elastomeric copolymer is produced, commonly known as ethylene-propylene rubber (EPR) or ethylene-propylene monomer (EPM) rubber. When a diene, such as dicyclopentadiene, is also included, a terpolymer known as ethylene-propylene-diene monomer (EPDM) rubber is obtained. EPR and EPDM are produced with single site and Ziegler-Natta catalysts and are important in the automotive and construction industries. However, EPR and EPDM are produced in much smaller quantities relative to polyethylene. Elastomers display vastly different properties than other versions of industrial polyethylene and are considered outside the purview of this text. EPR and EPDM will not be discussed further. [Pg.6]

A blend of low-density polyethylene (LDPE) polyethylene (LDPE) with the terpolymer ethylene-propylene-diene monomer rubber (EPDM) exhibits a synergistic effect on tensile strength if EPDM is partially crystalline, but a nonsynergistic effect if the EPDM is amorphous [65]. This example shows the dramatic effect that morphology can have on properties of polymer blends. The synergism apparently arises from a tendency for crystallites in the LDPE to nucleate crystalli2ation of ethylene segments in the EPDM. [Pg.529]

ASTM American Standard Test Method BS British Standard CAB Cellulose acetate butyrate DGEBA Diglycidyl ether of bisphenol A DSC Differential scanning calorimetry ENR Epoxidized natural rubber EVA Ethylene-co-vinylacetate EPDM Ethylene propylene diene monomer ESC Environmental stress cracking HDT Heat deflection/distortion temperature HDPE High-density polyethylene HIPS High -impact polystyrene... [Pg.1176]

BR, butyl rubber CB, carbon black CBS, cyclohexyl-2-benzothiazolefulfenamide CNT, carbon nanotube CSPE, chlorosulfonate polyethylene CIP, carbonyl-iron powder EPM, ethylene propylene monomer EPDM, ethylene propylene diene monomer EVA, ethylene-vinyl acetate FSR, fluorosilane rubber GRP, graphite powder HGM, hollow glass microsphere lONP, iron oxide nanoparticle LDH, layered double hydroxide MBT, 2-mercaptobenzothiazol MMT, modified montmorillonite NR, natural rubber PAMAM, polyamidoamine R-EPDM, recycled ethylene propylene diene monomer SR, silicon rubber SBR, styrene-butadiene rubber TBBS, iV-tert-butyl-2-benzothiazolesulfenamide. [Pg.80]

Although woven fabrics can be impregnated and coated in bitumen to give a bituminous geomembrane (BGM), the geomembranes widely used as impervious sheets are largely made from high-, medium-, and low-density polyethylene (HDPE, MDPE, LDPE), but PP, ethylene propylene diene monomer (EPDM) and PVC are used as alternatives for some applications. [Pg.279]

Roofing PVC, chlorinated polyethylene (CPE), polyvinylidene chloride (PVDC), GRP, PC, ethylene-propylene-diene monomer (EPDM), expanded polystyrene (EPS) (sheet), reinforced styrene-butadiene-styrene (SBS) copolymer... [Pg.5]

The insulation system for pitched roofs usually provides the advantage of a continuous, homogeneous insulating layer with an economy in construction. Bitumen (asphalt) as well as its different versions modified with various polymers and a number of different roofing membranes, i.e., preformed or liquid applied sheets of PVC, terpolymer of ethylene-propylene-diene monomer (EPDM), chlorosulfonated polyethylene (Hypalon), PU, butyl rubber, polychloroprene (Neoprene) [36], all have been used as insulating layers. [Pg.52]

CPE Chlorinated polyethylene HALS Hindered amine light stabiliser EPDM Ethylene propylene diene monomer MBS Methacrylate butadiene styrene EPR Ethylene propylene rubber NBR Acrylonitrile butadiene rubber EVA Ethylene vinyl acetate NR Natural rubber ... [Pg.192]

NR = natural rubber SBR = styrene-butadiene rubber EPDM = ethylene-propylene-diene monomer CSM = chlorosulfonated polyethylene and PE = polyethylene. [Pg.7285]

Both natural and synthetic rubbers are used as elastomeric linings. The most commonly used synthetic elastomers are NBR (acrylonitrile-butadiene), Hypalon (chlorosulfonated polyethylene), EPDM (ethylene-propylene-diene monomer), EPT (ethylene-propylene-diene terpolymer), SBR (styrene-butadiene), and neoprene (polychloroprene). A maximum use temperature of nS F/SOX is typical. [Pg.16]

Polycarbonate can be blended with polyethylene (PE). Bloiding PC with PE has found many uses with a combination of a high level of heat resistance and dimensional stability as well as noncorrosive properties and ease of moldabihty. It is deficient in its tendency to craze and crack under the effects of contact with organic solvents such as gasoline. The failure mechanism of a crazed PC would be brittle fracture ratha- than ductile fracture. Blending PC with low density polyethylene (LDPE) and with linear low density polyethylene (LLDPE) or with ethylene propylene diene monomer (EPDM) rubbo improves the chemical resistance of the product to solvents. [Pg.173]

The natural rubber does not generally exhibit all the desired properties for use in the rubber industry. Thus, it is possible to obtain better mechanical and physical properties at a lower cost by blending natural rubber with synthetic rubbers. Normally, natural rubber is deteriorated by ozone and thermal attacks due to its highly unsaturated backbone, and it also shows low oil and chemical resistances due to its non-polarity. However, these properties can be achieved by blending it with low unsaturated ethylene propylene diene monomer rubber, styrene butadiene rubber, carboxylate styrene butadiene rubber, nitrile butadiene rubber, chloroprene rubber, chlorosulfonated polyethylene rubber, and acrylonitrile butadiene rubber. [Pg.514]

The polyolefins are those polymers based only on carbon and hydrogen, originating from monomers containing a double bond in the 1-position, sometimes called a-olefins. Principally, these include polyethylene, polypropylene, copolymers of polyethylene containing various comonomers such as 1-butene, 1-hexene, and 1-octene, ethylene-propylene monomer (EPM), and ethylene-propylene-diene-monomer (EPDM). All of these are plastics except EPM and EPDM, which are elastomers. [Pg.757]

The disadvantage of ATH is its unsuitability for polymers which are processed at temperatures above 200°C. ATH is therefore little used in acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), polyamides (PA) and polypropylene (PP), and it is also ineffective at attainable filler loadings in polymethyl methacrylate (PMMA) and polystyrene (PS). ATH is successfully used in PVC, polyethylene (PE), ethyl vinyl acetate (EVA), ethylene propylene diene monomer (EPDM) and polyester, epoxy, phenolic, methacrylic and urethane thermosets. [Pg.580]

Exterior door handles are another application that has turned to plastics to balance chemical resistance and mechanical properties. Many filled thermoplastics such as blends of PC and polybutylene terephthalate (PBT), polyethylene terephthalate (PET), and nylon have been tried or used in this application, with nylon as the clear wirmer. Exterior mirror housings likewise use many thermoplastic solutions such as ABS, PC/ABS, blends of polyphenylene oxide (PPO) and polystyrene (PS), nylon, blends of PP and ethylene propylene diene monomer (EPDM), and weatherable ABS. Again, nylon clearly dominates this application in terms of volume. Many other exterior parts continue to adopt thermoplastic solutions. Figure 14 shows an impingement shield constructed from LGF PP. [Pg.21]

Automotive industry waste provided another idea for a study [10]. Recycled plastics from bumpers are being applied in several areas, even as new bumpers [11, 12]. Thermal analysis was applied to the material used in discarded car bumpers, which came from standard grade automobiles of different brands. The recycled polymer composition was a polymeric blend of PP, ethylene-propylene-diene monomer (EPDM) and high-density polyethylene (HOPE). Differential scanning calorimetry (DSC) analysis (Figure 2.5) confirmed the presence of PP, and indicated HDPE and EPDM as ingredients in the formulation of car bumpers. [Pg.13]

In one study, rPP and recycled polyethylene (rPE) were blended with two compatibilisers, polyethylene-grafted-maleic anhydride (PE-g-MA) and ethylene propylene diene monomer (EPDM) copolymer, and OMMT [56]. Scanning electron microscopy (SEM) micrographs showed that the blend with EPDM exhibited a better compatibilisation than PE-g-MA. The presence of OMMT caused an increase of the storage modulus and loss modulus additionally, OMMT improved the thermal stability. [Pg.36]


See other pages where Ethylene-propylene-diene-monomer polyethylene is mentioned: [Pg.149]    [Pg.149]    [Pg.296]    [Pg.682]    [Pg.464]    [Pg.231]    [Pg.86]    [Pg.790]    [Pg.361]    [Pg.361]    [Pg.7]    [Pg.11]    [Pg.85]    [Pg.736]    [Pg.171]    [Pg.33]    [Pg.91]    [Pg.171]    [Pg.5]    [Pg.22]    [Pg.312]    [Pg.73]    [Pg.16]    [Pg.802]    [Pg.440]   
See also in sourсe #XX -- [ Pg.516 ]




SEARCH



Diene monomers

Ethylene diene

Ethylene propylene

Ethylene-propylene monomer

Ethylene-propylene-diene

Monomers propylene monomer

Polyethylene monomers

Polyethylene-propylene

© 2024 chempedia.info