Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene anhydrous

Application The modern Vinnolit oxychlorination process produces ethylene dichloride (EDC) by an exothermic reaction from feedstocks including ethylene, anhydrous hydrogen chloride (HCI) and oxygen. Anhydrous HCI can be used from the VCM process as well as from other processes such as isocyanates (MDI, TDI), chlorinated methanes, chlorinated ethanes, epichlorohydrin, etc. [Pg.56]

All manipulations must be carried out in an inert atmosphere using degassed solvents.9 To a 25-mL, round-bottom flask fitted with a nitrogen inlet, reflux condenser, and magnetic stirring bar is added the di-chloro(rj6-hexamethyl-benzene)ruthenium dimer (0.2 g, 0.3 mmole). Under a counterstream of ethylene, anhydrous sodium carbonate (0.2 g) and ethanol (15 mL) are added. The mixture is stirred and heated under reflux under a slow flow of ethylene for 2 hours the solution initially turns deep red and finally becomes brown. After cooling to room temperature, solvent is stripped in vacuo and the residue is extracted with four 5 mL portions of hexane. The filtered extract is concen-... [Pg.76]

CH2C1 CH2C1. Colourless liquid with an odour like that of chloroform b.p. 84 C. It is an excellent solvent for fats and waxes. Was first known as oil of Dutch chemists . Manufactured by the vapour- or liquid-phase reaction of ethene and chlorine in the presence of a catalyst. It reacts with anhydrous ethano-ales to give ethylene glycol diethanoate and with ammonia to give elhylenediamine, these reactions being employed for the manufacture of these chemicals. It burns only with difficulty and is not decomposed by boiling water. [Pg.134]

Mono-alkyl ethers of ethylene glycol, ROCHjCHjOH. The mono methyl, ethyl and n-butyl ethers are inexpensive and are known as methyl cellosolve, cellosolve, and butyl cellosolve respectively. They are completely miscible with water, and are excellent solvents. The commercial products are purified by drying over anhydrous potassium carbonate or anhydrous calcium sulphate, followed by fractionation after... [Pg.170]

Instead of adding the liquid ethylene oxide (b.p. 10-6°), the latter may be dissolved in 100 ml. of ice-cold anhydrous ether this solution is added during 15-30 minutes. The yield, however, is somewhat lower. [Pg.254]

Alkyl fluorides may be prepared in moderate yield by interaction of an alkyl bromide with anhydrous potassium fluoride in the presence of dry ethylene glycol as a solvent for the inorganic fluoride, for example ... [Pg.272]

In a dry 500 ml. three-necked fiask, equipped with a mercury-sealed stirrer, a 100 ml. dropping funnel and a short fractionating column (1), place a mixture of 116 g. of anhydrous, finely-powered potassium fluoride (2) and 200 g. of dry ethylene glycol (3). Connect the fractionating... [Pg.288]

Place a mixture of 1 0 g. of the hydrocarbon, 10 ml. of dry methylene chloride or ethylene dichloride or syw.-tetrachloroethane, 2 5 g. of powdered anhydrous aluminium chloride and 1-2 g. of pure phthalic anhydride in a 50 ml. round-bottomed flask fitted with a short reflux condenser. Heat on a water bath for 30 minutes (or until no more hydrogen chloride fumes are evolved), and then cool in ice. Add 10 ml. of concentrated hydrochloric acid cautiously and shake the flask gently for 5 min utes. Filter oflf the solid at the pump and wash it with 10-15 ml. of cold water. Boil the resulting crude aroylbenzoic acid with 10 ml. of 2 -5N sodium carbonate solution and 0 2 g. of decolourising carbon for 5 minutes, and filter the hot solution. Cool, add about 10 g. of crushed ice and acidify... [Pg.519]

Ammonia, anhydrous Mercury, halogens, hypochlorites, chlorites, chlorine(I) oxide, hydrofluoric acid (anhydrous), hydrogen peroxide, chromium(VI) oxide, nitrogen dioxide, chromyl(VI) chloride, sulflnyl chloride, magnesium perchlorate, peroxodisul-fates, phosphorus pentoxide, acetaldehyde, ethylene oxide, acrolein, gold(III) chloride... [Pg.1207]

Olefins add anhydrous acetic acid to give esters, usually of secondary or tertiary alcohols propjiene [115-07-1] yields isopropyl acetate [108-21-4], isobutjiene [115-11-7] gives tert-huty acetate [540-88-5]. Minute amounts of water inhibit the reaction. Unsaturated esters can be prepared by a combined oxidative esterification over a platinum group metal catalyst. Eor example, ethylene-air-acetic acid passed over a palladium—Hthium acetate catalyst yields vinyl acetate. [Pg.66]

Oxidative Carbonylation of Ethylene—Elimination of Alcohol from p-Alkoxypropionates. Spectacular progress in the 1970s led to the rapid development of organotransition-metal chemistry, particularly to catalyze olefin reactions (93,94). A number of patents have been issued (28,95—97) for the oxidative carbonylation of ethylene to provide acryUc acid and esters. The procedure is based on the palladium catalyzed carbonylation of ethylene in the Hquid phase at temperatures of 50—200°C. Esters are formed when alcohols are included. Anhydrous conditions are desirable to minimize the formation of by-products including acetaldehyde and carbon dioxide (see Acetaldehyde). [Pg.156]

The inactivity of pure anhydrous Lewis acid haUdes in Friedel-Crafts polymerisation of olefins was first demonstrated in 1936 (203) it was found that pure, dry aluminum chloride does not react with ethylene. Subsequentiy it was shown (204) that boron ttifluoride alone does not catalyse the polymerisation of isobutylene when kept absolutely dry in a vacuum system. However, polymers form upon admission of traces of water. The active catalyst is boron ttifluoride hydrate, BF H20, ie, a conjugate protic acid H" (BF20H) . [Pg.564]

Ethyl Chloride. Most ethyl chloride [75-00-3] is produced by the hydrochlorination of ethylene (qv) using anhydrous HCl. Historically, the primary use of ethyl chloride was for the manufacture of tetraethyllead (TEL), a primary component of antiknock mixes in gasolines. Use has declined as a... [Pg.450]

Aqueous solutions can be stabilized against viscosity loss by addition of 5—10 wt % anhydrous isopropyl alcohol, ethanol, ethylene glycol, or propylene glycol. The manganous ion (Mn " ) also is an effective stabilizer at concentrations of 10 -10 wt% of the solution. [Pg.342]

Aqueous Solution Viscosity. A special solution preparation method is used for one type of measurement of aqueous solution viscosity (96). The appropriate amount of poly(ethylene oxide) resin is dispersed in 125 mL of anhydrous isopropyl alcohol by vigorous stirring. Because the resin is insoluble in anhydrous isopropyl alcohol, a slurry forms and the alcohol wets the resin particles. An appropriate amount of water is added and stirring is slowed to about 100 rpm to avoid shear degradation of the polymer. In Table 4, the nominal resin concentration reported is based on the amount of water present and ignores the isopropyl alcohol. [Pg.343]

Passing a stream of nitrogen at 95—100°C through a reaction mixture of ethyl ether and 30 wt % oleum prepared at 15°C results in the entrainment of diethyl sulfate. Continuous operation provides a >50% yield (96). The most economical process for the manufacture of diethyl sulfate starts with ethylene and 96 wt % sulfuric acid heated at 60°C. The resulting mixture of 43 wt % diethyl sulfate, 45 wt % ethyl hydrogen sulfate, and 12 wt % sulfuric acid is heated with anhydrous sodium sulfate under vacuum, and diethyl sulfate is obtained in 86% yield the commercial product is >99% pure (97). [Pg.201]

Cesium forms simple alkyl and aryl compounds that are similar to those of the other alkah metals (6). They are colorless, sohd, amorphous, nonvolatile, and insoluble, except by decomposition, in most solvents except diethylzinc. As a result of exceptional reactivity, cesium aryls should be effective in alkylations wherever other alkaline alkyls or Grignard reagents have failed (see Grignard reactions). Cesium reacts with hydrocarbons in which the activity of a C—H link is increased by attachment to the carbon atom of doubly linked or aromatic radicals. A brown, sohd addition product is formed when cesium reacts with ethylene, and a very reactive dark red powder, triphenylmethylcesium [76-83-5] (C H )2CCs, is formed by the reaction of cesium amalgam and a solution of triphenylmethyl chloride in anhydrous ether. [Pg.375]

Dichloroethane, an important intermediate for vinyl chloride production, is produced by catalytic chlorination of ethylene in either vapor or Hquid phase or by oxychlorination of ethylene. Thermal dehydrochlorination of 1,2-dichloroethane produces vinyl chloride and coproduct hydrogen chloride. Hydrogen chloride is commonly recycled to an oxychlorination unit to produce 1,2-dichloroethane or is processed into sales-grade anhydrous or aqueous hydrogen chloride. [Pg.506]

Other Proeesses For Ethyl Chloride. 1,2-Dichloroethane and ethylene, after at least 3 min in the presence of anhydrous calcium sulfate at 250—350°C and pressures of 0.69—2.76 MPa (100—400 psi), yield a mixture of ethyl chloride and vinyl chloride (35). [Pg.3]

Fig. 9. Extractive distillation sequence cost as a function of the feed ratio for the production of anhydrous ethanol from azeotropic ethanol using ethylene glvcol at reflux ratios of A, 1.15 r O, 1.2 r and 1.3 r (39). Point A represents a previously pubhshed design for the same mixture (37). Fig. 9. Extractive distillation sequence cost as a function of the feed ratio for the production of anhydrous ethanol from azeotropic ethanol using ethylene glvcol at reflux ratios of A, 1.15 r O, 1.2 r and 1.3 r (39). Point A represents a previously pubhshed design for the same mixture (37).
Instead of adding the condensed ethylene oxide, it may be dissolved in 350 cc. of chilled anhydrous ether which is added during the course of one to two hours. In this case, however, the yields are lower, apparently owing to the vaporization of some of the ethylene oxide. [Pg.56]

A one-stage process for producing vinyl acetate directly from ethylene has also been disclosed. In this process ethylene is passed through a substantially anhydrous suspension or solution of acetic acid containing cupric chloride and copper or sodium acetate together with a palladium catalyst to yield vinyl acetate. [Pg.388]

Alkyl fluorides have been prepared by reaction between elementary fluorine and the paraffins, by the addition of hydrogen fluoride to olefins, by the reaction of alkyl halides with mercurous fluoride, with mercuric fluoride, with silver fluoride, or with potassium fluoride under pressure. The procedure used is based on that of Hoffmann involving interaction at atmospheric pressure of anhydrous potassium fluoride with an alkyl halide in the presence of ethylene glycol as a solvent for the inorganic fluoride a small amount of olefin accompanies the alkyl fluoride produced and is readily removed by treatment with bromine-potassium bromide solution. Methods for the preparation of alkyl monofluorides have been reviewed. ... [Pg.43]

The cooled mixture is transferred to a 3-1. separatory funnel, and the ethylene dichloride layer is removed. The aqueous phase is extracted three times with a total of about 500 ml. of ether. The ether and ethylene chloride solutions are combined and washed with three 100-ml. portions of saturated aqueous sodium carbonate solution, which is added cautiously at first to avoid too rapid evolution of carbon dioxide. The non-aqueous solution is then dried over anhydrous sodium carbonate, the solvents are distilled, and the remaining liquid is transferred to a Claisen flask and distilled from an oil bath under reduced pressure (Note 5). The aldehyde boils at 78° at 2 mm. there is very little fore-run and very little residue. The yield of crude 2-pyrrolealdehyde is 85-90 g. (89-95%), as an almost water-white liquid which soon crystallizes. A sample dried on a clay plate melts at 35 0°. The crude product is purified by dissolving in boiling petroleum ether (b.p. 40-60°), in the ratio of 1 g. of crude 2-pyrrolealdehyde to 25 ml. of solvent, and cooling the solution slowly to room temperature, followed by refrigeration for a few hours. The pure aldehyde is obtained from the crude in approximately 85% recovery. The over-all yield from pyrrole is 78-79% of pure 2-pyrrolealdehyde, m.p. 44 5°. [Pg.75]

Preparation of l9-Norandrost-A-ene-3, l-dionef A solution of 1.1 g of 10y5-cyano-19-norandrost-5-ene-3,17-dione bis-ethylene ketal in a mixture of 15 ml of ethanol and 15 ml of toluene is carefully added to a vigorously stirred suspension of 10 g of sodium in 150 ml of boiling toluene. The addition is regulated to maintain the reaction mixture at the boiling point of the solvent. Another 40 ml of anhydrous ethanol is then added at the same rate. The solution is cooled and the excess of sodium is decomposed by addition of 95% ethanol. The reaction mixture is then diluted with water, the toluene layer separated and the aqueous phase extracted twice with ether. The organic solution is washed with water, dried and evaporated to yield 1 g of an amorphous mixture of the bis-ethylene ketals of 19- norahd-rost-5- and -5(10)-ene-3,17-dione (Note 1). [Pg.278]


See other pages where Ethylene anhydrous is mentioned: [Pg.214]    [Pg.214]    [Pg.253]    [Pg.460]    [Pg.308]    [Pg.287]    [Pg.446]    [Pg.451]    [Pg.40]    [Pg.199]    [Pg.13]    [Pg.87]    [Pg.223]    [Pg.237]    [Pg.472]    [Pg.92]    [Pg.138]    [Pg.252]    [Pg.718]    [Pg.38]    [Pg.172]    [Pg.177]    [Pg.302]    [Pg.370]   
See also in sourсe #XX -- [ Pg.32 , Pg.462 ]




SEARCH



© 2024 chempedia.info