Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Evolution rapid

The question "Will chemistry survive in XXI century " posed at The 215th Meeting of the American Chemical Society in Dallas in March 1998 [10] was answered positively. But it was stressed that chemistry will undergo a certain evolution. Rapidly developing exciting domain of supramolecular chemistry will certainly occupy an important position in this development. [Pg.323]

Evolution— rapid and relentlessly progressive symmetrical weakness of thigh and pelvic girdle muscles (tendency to fall, diflSculty in rising, rolling gait, lumbar lordosis) and soon of muscles of shoulder girdle, trunk, and upper limbs 80% of cases show initial pseudohypertrophy of muscles, notably the calves, due possibly to fatty replacement (P7b). [Pg.140]

The reaction of this solid [48] was the first [133] example of Smith-Topley behaviour recognized and studies of this rate process have continued. Flanagan and Kim [133] showed that irradiation decreased the induction period to dehydration and the rate of water evolution rapidly reached a maximum value which was maintained between 0 < nr < 0.4. Water evolution was more rapid than that found for unirradiated salt and the value of , was decreased. Irradiation damage to the crystal promoted nucleation and there was rapid initial establishment of a constant area of reaction interface (the contracting volume equation approximates to zero-order kinetics at low values of nr). There was also evidence [134] that preirradation aided recrystallization during vacuum dehydration. [Pg.246]

Kramers solution of the barrier crossing problem [45] is discussed at length in chapter A3.8 dealing with condensed-phase reaction dynamics. As the starting point to derive its simplest version one may use the Langevin equation, a stochastic differential equation for the time evolution of a slow variable, the reaction coordinate r, subject to a rapidly statistically fluctuating force F caused by microscopic solute-solvent interactions under the influence of an external force field generated by the PES F for the reaction... [Pg.848]

A. Maleic acid. Assemble the apparatus shown in Fig. Ill, 28, 1. Place 45 g. of dry mahc acid in the 200-250 ml. distilling flask and cautiously add 63 g. (57 ml.) of pure acetyl chloride. Warm the flask gently on a water bath to start the reaction, which then proceeds exothermically. Hydrogen chloride is evolved and the malic acid passes into solution. When the evolution of gas subsides, heat the flask on a water bath for 1-2 hours. Rearrange the apparatus and distil. A fraction of low boiling point passes over first and the temperature rises rapidly to 190° at this point run out the water from the condenser. Continue the distillation and collect the maleic anhydride at 195-200°. Recrystallise the crude maleic anhydride from chloroform (compare Section 111,93) 22 g. of pure maleic anhydride, m.p. 54°, are obtained. [Pg.462]

Dissolve 57 g. of dry malonic acid in 92 5 ml. of dry P3rridine contained in a 500 ml. round-bottomed flask, cool the solution in ice, and add 57 g. (70 ml.) of freshly distilled n-heptaldehyde (oenanthol) with stirring or vigorous shaking. After a part of the aldehyde has been added, the mixture rapidly seta to a mass of crystals. Insert a cotton wool (or calcium chloride) tube into the mouth of the flask and allow the mixture to stand at room temperature for 60 hours with frequent shaking. Finally, warm the mixture on a water bath until the evolution of carbon dioxide ceases (about 8 hours) and then pour into an equal volume of water. Separate the oily layer and shake it with 150 ml. of 25 per cent hydrochloric acid to remove pyridine. Dissolve the product in benzene, wash with water, dry with anhydrous magnesium sulphate, and distil under reduced pressure. Collect the ap-nonenoic acid at 130-13272 mm. The yield is 62 g. [Pg.466]

Method 1. From ammonium chloroplatinate. Place 3 0 g. of ammonium chloroplatinate and 30 g. of A.R. sodium nitrate (1) in Pyrex beaker or porcelain casserole and heat gently at first until the rapid evolution of gas slackens, and then more strongly until a temperature of about 300° is reached. This operation occupies about 15 minutes, and there is no spattering. Maintain the fluid mass at 500-530° for 30 minutes, and allow the mixture to cool. Treat the sohd mass with 50 ml. of water. The brown precipitate of platinum oxide (PtOj.HjO) settles to the bottom. Wash it once or twice by decantation, filter througha hardened filter paper on a Gooch crucible, and wash on the filter until practically free from nitrates. Stop the washing process immediately the precipitate tends to become colloidal (2) traces of sodium nitrate do not affect the efficiency of the catalyst. Dry the oxide in a desiccator, and weigh out portions of the dried material as required. [Pg.470]

Conduct the preparation in the fume cupboard. Dissolve 250 g. of redistilled chloroacetic acid (Section 111,125) in 350 ml. of water contained in a 2 -5 litre round-bottomed flask. Warm the solution to about 50°, neutralise it by the cautious addition of 145 g. of anhydrous sodium carbonate in small portions cool the resulting solution to the laboratory temperature. Dissolve 150 g. of sodium cyanide powder (97-98 per cent. NaCN) in 375 ml. of water at 50-55°, cool to room temperature and add it to the sodium chloroacetate solution mix the solutions rapidly and cool in running water to prevent an appreciable rise in temperature. When all the sodium cyanide solution has been introduced, allow the temperature to rise when it reaches 95°, add 100 ml. of ice water and repeat the addition, if necessary, until the temperature no longer rises (1). Heat the solution on a water bath for an hour in order to complete the reaction. Cool the solution again to room temperature and slowly dis solve 120 g. of solid sodium hydroxide in it. Heat the solution on a water bath for 4 hours. Evolution of ammonia commences at 60-70° and becomes more vigorous as the temperature rises (2). Slowly add a solution of 300 g. of anhydrous calcium chloride in 900 ml. of water at 40° to the hot sodium malonate solution mix the solutions well after each addition. Allow the mixture to stand for 24 hours in order to convert the initial cheese-Uke precipitate of calcium malonate into a coarsely crystalline form. Decant the supernatant solution and wash the solid by decantation four times with 250 ml. portions of cold water. Filter at the pump. [Pg.490]

Dissolve 50 g. of piperonal and 75 g. of malonic acid in a mixture of 160 ml. of pyridine and 2-5 ml. of piperidine contained in a 500 ml. round-bottomed flask, and heat under reflux for 1 hour on a water bath. A rapid evolution of carbon dioxide takes place. Complete the reaction by boiling the solution for 5 minutes. Cool, pour into excess of water containing enough hydrochloric acid to combine with the pyridine, filter ofiFthe piperonylacrylic acid, wash with a little water, and dry. The yield is almost quantitative and the acid is practically pure. It may be recrystallised from glacial acetic acid m.p. 238°. [Pg.719]

In a 500 ml. Pyrex round-bottomed flask, provided with a reflux condenser, place a mixture of 40 g. of freshly-distUled phenylhydrazine (Section IV.89) and 14 g. of urea (previously dried for 3 hours at 100°). Immerse the flask in an oil bath at 155°. After about 10 minutes the urea commences to dissolve accompanied by foaming due to evolution of ammonia the gas evolution slackens after about 1 hour. Remove the flask from the oil bath after 135 minutes, allow it to cool for 3 minutes, and then add 250 ml. of rectified spirit to the hot golden-yellow oil some diphenylcarbazide will crystallise out. Heat under reflux for about 15 minutes to dissolve the diphenylcarbazide, filter through a hot water funnel or a pre-heated Buchner fuimel, and cool the alcoholic solution rapidly in a bath of ice and salt. After 30 minutes, filter the white crystals at the pump, drain well, and wash twice with a little ether. Dry upon filter paper in the air. The yield of diphenylcarbazide, m.p. 171 °, is 34 g. A further 7 g. may be obtained by concentrating the filtrate under reduced pressure. The compound may be recrystallised from alcohol or from glacial acetic acid. [Pg.955]

Treating a benzene suspension of sodium borohydride (4 equiv.) With glacial acetic acid (3.25 equiv.) And refluxing the mixture for 15 min under nitrogen, after the initial rapid gas evolution subsided (ca. 3 mol of Hz liberated) [No Smoking ], gave a clear solution of NaBH(OAc)3. ... [Pg.120]

Acyl halides are intermediates of the carbonylations of alkenes and organic-halides. Decarbonylation of acyl halides as a reversible process of the carbo-nylation is possible with Pd catalyst. The decarbonylation of aliphatic acid chlorides proceeds with Pd(0) catalyst, such as Pd on carbon or PdC, at around 200 °C[109,753]. The product is a mixture of isomeric internal alkenes. For example, when decanoyl chloride is heated with PdCF at 200 C in a distillation flask, rapid evolution of CO and HCl stops after I h, during which time a mixture of nonene isomers was distilled off in a high yield. The decarbonylation of phenylpropionyl chloride (883) affords styrene (53%). In addition, l,5-diphenyl-l-penten-3-one (884) is obtained as a byproduct (10%). formed by the insertion of styrene into the acyl chloride. Formation of the latter supports the formation of acylpalladium species as an intermediate of the decarbonylation. Decarbonylation of the benzoyl chloride 885 can be carried out in good yields at 360 with Pd on carbon as a catalyst, yielding the aryl chloride 886[754]. [Pg.258]


See other pages where Evolution rapid is mentioned: [Pg.120]    [Pg.7]    [Pg.115]    [Pg.66]    [Pg.120]    [Pg.7]    [Pg.115]    [Pg.66]    [Pg.300]    [Pg.662]    [Pg.251]    [Pg.1069]    [Pg.1539]    [Pg.18]    [Pg.189]    [Pg.76]    [Pg.78]    [Pg.105]    [Pg.106]    [Pg.112]    [Pg.132]    [Pg.196]    [Pg.273]    [Pg.483]    [Pg.490]    [Pg.79]    [Pg.434]    [Pg.606]    [Pg.607]    [Pg.613]    [Pg.699]    [Pg.781]    [Pg.791]    [Pg.792]    [Pg.798]    [Pg.810]    [Pg.815]    [Pg.827]    [Pg.923]    [Pg.977]    [Pg.1004]    [Pg.116]   
See also in sourсe #XX -- [ Pg.290 ]




SEARCH



Methodological evolution rapidity

Morphological evolution rapid

© 2024 chempedia.info