Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethanol electrodes

2 Ethanol Electrodes The reliable sensing of ethanol is of great significance in various disciplines. The enzymatic reaction of ethanol with the cofactor nicotinamide-adenine dinucleotide (NAD+), in the presence of alcohol dehydrogenase (ADH) [Pg.178]

FIGURE 6-6 Chemical stmcture of some common redox mediators (a) dimethyl ferrocene (b) tetrathiafidvalene (c) tetracyanoquinodimethane (cl) Meldola Blue. [Pg.179]

FIGURE 6-7 Schematic representation of a disposable glucose sensor strip. (Reproduced with permission front reference 13.) [Pg.179]

FIGURE 6-8 Composition of an electron-relaying redox polymer used for wiring enzymes to electrode transducer. (Reproduced with permission from reference 14.) [Pg.180]

To circumvent high overvoltage and fouling problems encountered with the direct oxidation of NADH at conventional electrode (equation 6-11), much work has been devoted to the development of modified electrodes with catalytic properties for [Pg.180]


Electroosmotic flow, 195 End column detection, 89 Energy barrier, 16 Enzyme electrodes, 172, 174 Enzyme immunoassays, 185 Enzyme inhibition, 181 Enzyme reconstitution, 178 Enzyme wiring, 178 Equilibrium potential, 15 Ethanol electrodes, 87, 178 Exchange current, 14... [Pg.206]

There is a strong demand for biosensors in the food produce industry to follow the various steps in production, and control the quality of the final products. The glucose electrode is used to monitor fermentation, the lactate electrode to control the quality of wines and yoghurt, and the ethanol electrode to evaluate the degree of alcohol in alcoholic drinks. [Pg.5]

Dipping solution I Organic acids Dissolve 40 mg bromocresol purple in 100 ml 50% ethanol and adjust to pH = 10.0 (glass electrode) with caustic soda solution (c = 0.1 mol/1) [1]. [Pg.231]

Electrodes and Galvanic Cells. The Silver-Silver Chloride Electrode. The Hydrogen Electrode. Half-cells Containing an Amalgam, Electrode. Two Cells Placed Back to Back. Cells Containing Equimolal Solutions. The Alkali Chlorides as Solutes. HC1 in Methanol or Ethanol Containing a Trace of Water. The Alkali Chlorides in Methanol-Water Mixtures. The Heal of Solution of HC1. Proton Transfer Equilibrium from Measurements of E.M.F. [Pg.217]

In the cells discussed in Sec. 57 the solvent in every case was water. But in this chapter we shall discuss cells placed back to back, where one solution contains a solute dissolved in water, while the other contains the same solute dissolved in ethanol, or in methanol, or in a methanol-water mixture. When, for example, a hydrogen electrode containing IIC1 dissolved in ethanol is coupled to a Ag/AgCl electrode, also containing HC1 dissolved in ethanol, the cell may be written... [Pg.220]

HCl in Methanol or Ethanol Containing a Trace of Water. When a little HCl is dissolved in methanol, nearly all the protons are transferred to solvent molecules to form (CI130H2)+ ions. If now a certain amount of water is mixed with this solution, each water molecule provides for a proton a vacant level that lies considerably deeper than that occupied in the (CHaOH2)+ ion. Consequently, as we saw in Sec. 36, many of the protons are transferred, to form (H30)+ ions. If a hydrogen electrode is dipping into this solution, the falling of the protons will be... [Pg.224]

Before use, electrodes must be carefully cleaned to remove any previous deposits. Deposits of copper, silver, cadmium, mercury, and many other metals can be removed by immersion in dilute nitric acid (1 1), rinsing with water, then boiling with fresh 1 1 nitric acid for 5-10 minutes, followed by a final washing with water. Deposits of lead dioxide are best removed by means of 1 1 nitric acid containing a little hydrogen peroxide to reduce the lead to the Pb(II) condition ethanol or oxalic acid may replace the hydrogen peroxide. [Pg.512]

FIGURE 3-21 Typical amperometric readout during automated flow injection assays of ethanol at an enzyme carbon-paste electrode. Peaks a through h 2 x 10 5 M to 1.6 x 10 4 M ethanol. [Pg.87]

Here, A is the contacting surface area of anode electrode facing with electrolyte and P is the porosity of anode electrode. The average effective radius of pore,, could be calculated from the results of the capillary rise method using ethanol, which shows a contact angle of 0° with the anode electrode. And then, the contact angle 0 could be acquired as the slope from the plot of m versus... [Pg.622]

Many dehydrogenase enzymes catalyze oxidation/reduction reactions with the aid of nicotinamide cofactors. The electrochemical oxidation of nicotinamide adeniiw dinucleotide, NADH, has been studied in depthThe direct oxidation of NADH has been used to determine concentration of ethanol i s-isv, i62) lactate 157,160,162,163) pyTuvate 1 ), glucose-6-phosphate lactate dehydrogenase 159,161) alanine The direct oxidation often entails such complications as electrode surface pretreatment, interferences due to electrode operation at very positive potentials, and electrode fouling due to adsorption. Subsequent reaction of the NADH with peroxidase allows quantitation via the well established Clark electrode. [Pg.65]

Gold is generally considered a poor electro-catalyst for oxidation of small alcohols, particularly in acid media. In alkaline media, however, the reactivity increases, which is related to that fact that no poisoning CO-hke species can be formed or adsorbed on the surface [Nishimura et al., 1989 Tremihosi-Filho et al., 1998]. Similar to Pt electrodes, the oxidation of ethanol starts at potentials corresponding to the onset of surface oxidation, emphasizing the key role of surface oxides and hydroxides in the oxidation process. The only product observed upon the electrooxidation of ethanol on Au in an alkaline electrolyte is acetate, the deprotonated form of acetic acid. The lack of carbon dioxide as a reaction product again suggests that adsorbed CO-like species are an essential intermediate in CO2 formation. [Pg.195]

In acidic media, the reactivity of ethanol on Au electrodes is much lower than in alkaline media. The main product of the oxidation of ethanol on Au in an acidic electrolyte was found to be acetaldehyde, with small amounts of acetic acid [Tremiliosi-FiUio et al., 1998]. The different reactivities and the product distributions in different media were explained by considering the interactions between the active sites on Au, ethanol, and active oxygen species absorbed on or near the electrode surface. In acidic media, surface hydroxide concentrations are low, leading to relatively slow dehydrogenation of ethanol to form acetaldehyde as the main oxidation pathway. In contrast, in alkaline media, ethanol, adsorbed as an ethoxy species, reacts with a surface hydroxide, forming adsorbed acetate, leading to acetate (acetic acid) as the main reaction product. [Pg.195]

Another metal that has attracted interest for use as electrode material is rhodium, inspired by its high activity in the catalytic oxidation of CO in automotive catalysis. It is found that Rh is a far less active catalyst for the ethanol electro-oxidation reaction than Pt [de Souza et al., 2002 Leung et al., 1989]. Similar to ethanol oxidation on Pt, the main reactions products were CO2, acetaldehyde, and acetic acid. Rh, however, presents a significant better CO2 yield relative to the C2 compounds than Pt, indicating a... [Pg.195]

In this chapter, we have summarized (recent) progress in the mechanistic understanding of the oxidation of carbon monoxide, formic acid, methanol, and ethanol on transition metal (primarily Pt) electrodes. We have emphasized the surface science approach employing well-defined electrode surfaces, i.e., single crystals, in combination with surface-sensitive techniques (FTIR and online OEMS), kinetic modeling and first-principles DFT calculations. [Pg.197]

Lai SCS, Koper MTM. 2009. Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes. Faraday Discuss 140 399-416. [Pg.203]

Shin J, Tomquist WJ, Korzeniewski C, Hoaglund CS. 1996. Elementary steps in the oxidation and dissociative chemisorption of ethanol on smooth and stepped surface planes of platinum electrodes. Surf Sci 364 122. [Pg.205]

Xia XH, Liess HD, Iwasita T. 1997. Early stages in the oxidation of ethanol at low index single crystal platinum electrodes. J Electroanal Chem 437 233-240. [Pg.208]

Finally, trimetallic compounds have been developed to enhance the electroactivity of Pt-based catalysts, for either methanol or ethanol electro-oxidation. A long time ago, it was reported that adsorption of molybdates (Na2Mo04) at a Pt black electrode... [Pg.352]


See other pages where Ethanol electrodes is mentioned: [Pg.392]    [Pg.159]    [Pg.537]    [Pg.1025]    [Pg.631]    [Pg.428]    [Pg.118]    [Pg.404]    [Pg.69]    [Pg.110]    [Pg.813]    [Pg.817]    [Pg.211]    [Pg.590]    [Pg.272]    [Pg.312]    [Pg.108]    [Pg.159]    [Pg.194]    [Pg.194]    [Pg.196]    [Pg.196]    [Pg.201]    [Pg.344]   
See also in sourсe #XX -- [ Pg.212 ]

See also in sourсe #XX -- [ Pg.87 , Pg.178 ]




SEARCH



© 2024 chempedia.info