Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzymes allosteric sites

Allosteric site Site on the enzyme other than the active site to which a nonsubstate compound binds. This may result in a conformational change at the active site so that the normal substrate cannot bind to it. [Pg.603]

Inhibition The decrease of the rate of an enzyme-catalyzed reaction by a chemical compound including substrate analogues. Such inhibition may be competitive with the substrate (binding at die active site of die enzyme) or non-competitive (binding at an allosteric site). [Pg.904]

Pyruvate kinase possesses allosteric sites for numerous effectors. It is activated by AMP and fructose-1,6-bisphosphate and inhibited by ATP, acetyl-CoA, and alanine. (Note that alanine is the a-amino acid counterpart of the a-keto acid, pyruvate.) Furthermore, liver pyruvate kinase is regulated by covalent modification. Flormones such as glucagon activate a cAMP-dependent protein kinase, which transfers a phosphoryl group from ATP to the enzyme. The phos-phorylated form of pyruvate kinase is more strongly inhibited by ATP and alanine and has a higher for PEP, so that, in the presence of physiological levels of PEP, the enzyme is inactive. Then PEP is used as a substrate for glucose synthesis in the pathway (to be described in Chapter 23), instead... [Pg.630]

Two particularly interesting aspects of the pyruvate carboxylase reaction are (a) allosteric activation of the enzyme by acyl-coenzyme A derivatives and (b) compartmentation of the reaction in the mitochondrial matrix. The carboxy-lation of biotin requires the presence (at an allosteric site) of acetyl-coenzyme A or other acylated coenzyme A derivatives. The second half of the carboxylase reaction—the attack by pyruvate to form oxaloacetate—is not affected by CoA derivatives. [Pg.745]

In die metabolic pathway to an amino add several steps are involved. Each step is die result of an enzymatic activity. The key enzymatic activity (usually die first enzyme in the synthesis) is regulated by one of its products (usually die end product, eg die amino add). If die concentration of die amino add is too high die enzymatic activity is decreased by interaction of die inhibitor with the regulatory site of die enzyme (allosteric enzyme). This phenomenon is called feedback inhibition. [Pg.241]

Substances that do not target the active site but display inhibition by allosteric mechanisms are associated with a lower risk of unwanted interference with related cellular enzymes. Allosteric inhibition of the viral polymerase is employed in the case of HIV-1 nonnucleosidic RT inhibitors (NNRTl, see chapter by Zimmermann et al., this volume) bind outside the RT active site and act by blocking a conformational change of the enzyme essential for catalysis. A potential disadvantage of targeting regions distant from the active site is that these may be subject to a lower selective pressure for sequence conservation than the active site itself, which can lower the threshold for escape of the virus by mutation. [Pg.11]

The lack of structural similarity between a feedback inhibitor and the substrate for the enzyme whose activity it regulates suggests that these effectors are not isosteric with a substrate but allosteric ( occupy another space ). Jacques Monod therefore proposed the existence of allosteric sites that are physically distinct from the catalytic site. Allosteric enzymes thus are those whose activity at the active site may be modulated by the presence of effectors at an allosteric site. This hypothesis has been confirmed by many lines of evidence, including x-ray crystallography and site-directed mutagenesis, demonstrating the existence of spatially distinct active and allosteric sites on a variety of enzymes. [Pg.75]

Bicarbonate as a source of CO2 is required in the initial reaction for the carboxylation of acetyl-CoA to mal-onyl-CoA in the presence of ATP and acetyl-CoA carboxylase. Acetyl-CoA carboxylase has a requirement for the vitamin biotin (Figure 21-1). The enzyme is a multienzyme protein containing a variable number of identical subunits, each containing biotin, biotin carboxylase, biotin carboxyl carrier protein, and transcarboxylase, as well as a regulatory allosteric site. The reaction takes place in two steps (1) carboxylation of biotin involving ATP and (2) transfer of the carboxyl to acetyl-CoA to form malonyl-CoA. [Pg.173]

When binding of a substrate molecule at an enzyme active site promotes substrate binding at other sites, this is called positive homotropic behavior (one of the allosteric interactions). When this co-operative phenomenon is caused by a compound other than the substrate, the behavior is designated as a positive heterotropic response. Equation (6) explains some of the profile of rate constant vs. detergent concentration. Thus, Piszkiewicz claims that micelle-catalyzed reactions can be conceived as models of allosteric enzymes. A major factor which causes the different kinetic behavior [i.e. (4) vs. (5)] will be the hydrophobic nature of substrate. If a substrate molecule does not perturb the micellar structure extensively, the classical formulation of (4) is derived. On the other hand, the allosteric kinetics of (5) will be found if a hydrophobic substrate molecule can induce micellization. [Pg.449]

Allosteric enzymes have sites other than the catalytic or active site which are associated with the activation and inhibition of the enzyme. [Pg.271]

PFK-1 is a classic example of a tetrameric allosteric enzyme. Each of the four subunits has two ATP binding sites one is the active site where ATP is co-substrate and the other is an inhibitory allosteric site. ATP may bind to the substrate (active) site when the enzyme is in either the R (active) or T (inhibited) form. The other co-substrate, F-6-P binds only to the enzyme in the R state. AMP may also bind to the R form and in so doing stabilises the protein in that active conformation permitting ATP and F-6-P to bind. [Pg.73]

Enzymatic reactions can be impeded by the addition of exogenous molecules. This is how drugs are used to control biochemical reactions, and most drugs are used for inhibitory functions. Drugs may function as competitive inhibitors or as noncompetitive inhibitors. Competitive inhibitors compete with the substrates for binding to the active sites, whereas noncompetitive inhibitors bind to another location (allosteric site) but affect the active site and its consequential interactions with the substrates. Some drugs used as enzyme inhibitors are the following ... [Pg.35]

For example, experimental data might reveal that a novel enzyme inhibitor causes a concentration-dependent increase in Km, with no effect on and with Lineweaver-Burk plots indicative of competitive inhibition. Flowever, even at very high inhibitor concentrations and very low substrate concentrations, it is observed that the degree of inhibition levels off when some 60% of activity still remains. Furthermore, it has been confirmed that only one enzyme is present, and all appropriate blank rates have been accounted for. It is clear that full competitive inhibition cannot account for such observations because complete inhibition can be attained at infinitely high concentrations of a full competitive inhibitor. Thus, it is likely that the inhibitor binds to the enzyme at an allosteric site. [Pg.110]

In some cases, an inhibitor can bind to more than one site on an enzyme protein, with inhibition resulting from binding at multiple sites. Binding affinities at the two (or more) sites may be different, and mechanisms of inhibition may be dilferent for example, high-affinity inhibition might occur through an allosteric site and lower affinity inhibition through the active site. Analysis of such systems is complex and may require a combination of several of the approaches outlined later. [Pg.114]

The special case of interest in regulatory enzymes is when the product p itself is the effector, i.e., p itself binds to the regulatory, or the allosteric, site R. In this case, Cff is identified with and we have the differential equation... [Pg.261]

Figure 8.7. Schematic illustration of an enzyme with a catalytic site for binding A and a regulatory (allosteric) site for binding R. Figure 8.7. Schematic illustration of an enzyme with a catalytic site for binding A and a regulatory (allosteric) site for binding R.
Figure 8.9. An enzyme with one catalytic site for A and two regulatory (allosteric) sites for R. Figure 8.9. An enzyme with one catalytic site for A and two regulatory (allosteric) sites for R.
The fact that ATP and CTP bind to the same site follows from the observation that adding ATP to the inhibited enzyme by CTP reduces or reverses the inhibition, presumably because ATP competes with CTP for the same site. The fact that CTP binds to an allosteric site (i.e., it is not a competitive inhibitor) follows from the so-called desensitization effect. Addition of mercurials [e.g., p-mercuribenzoate (PMB)] reduces or eliminates the inhibition by CTP. However, it has no effect on the enzymatic activity of ATCase, presumably because the mercurials affect the regulatory subunits but not the catalytic site. As for the mechanism of cooperativity (both positive and negative), it is known that CTP does induce changes in the quaternary structure of the enzyme. [Pg.280]

To provide a mechanism for the feedback inhibition of these enzymes, the allosteric model was put forward in 1963. It was proposed that the enzyme that regulates the flux through a pathway has two distinct binding sites, the active site and a separate site to which the regulator binds. This was termed the allosteric site. The word allosteric means different shape , which in the context of this mechanism means a different shape from the substrate. The theory further proposed that when the regnlator binds to the allosteric site, it canses a conformational change in... [Pg.49]

It is possible for an enzyme to be regulated by several different external regulators that all bind at different allosteric sites on the enzyme. In this case, if the concentrations of all the regulators change in directions to change the activity of the enzyme in the same direction, the effect of all external regulators could be cumulative (Figure 3.29). [Pg.64]

Regulation of the balance of the concentrations of the four deoxyribonucleotides depends on the properties of only two enzymes, the ribonucleotide reductase complex and deoxy-CMP deaminase. The balance between pyrimidine deoxynucleotides is brought about by the properties of the deoxy-CMP deaminase, which is inhibited by deoxy-TTP and stimulated by deoxy-CTP. The ribonucleotide reductase also possesses allosteric sites which bind all four deoxynucleotide triphosphates, the effect of which is to maintain approximately similar concentrations of all the triphosphates. [Pg.458]

Fig. 16.3 Non-competitive inhibitor changes the actiue site of enzyme cfter binding at allosteric site. Fig. 16.3 Non-competitive inhibitor changes the actiue site of enzyme cfter binding at allosteric site.

See other pages where Enzymes allosteric sites is mentioned: [Pg.128]    [Pg.33]    [Pg.220]    [Pg.10]    [Pg.74]    [Pg.76]    [Pg.78]    [Pg.78]    [Pg.6]    [Pg.9]    [Pg.11]    [Pg.12]    [Pg.51]    [Pg.63]    [Pg.202]    [Pg.423]    [Pg.235]    [Pg.39]    [Pg.359]    [Pg.318]    [Pg.138]    [Pg.19]    [Pg.110]    [Pg.268]    [Pg.211]    [Pg.256]    [Pg.164]    [Pg.213]    [Pg.366]   
See also in sourсe #XX -- [ Pg.257 ]

See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Allosteric

Allosteric enzymes

Allosteric site

Allosterism

© 2024 chempedia.info