Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ribonucleotide reductase complex

Regulation of the balance of the concentrations of the four deoxyribonucleotides depends on the properties of only two enzymes, the ribonucleotide reductase complex and deoxy-CMP deaminase. The balance between pyrimidine deoxynucleotides is brought about by the properties of the deoxy-CMP deaminase, which is inhibited by deoxy-TTP and stimulated by deoxy-CTP. The ribonucleotide reductase also possesses allosteric sites which bind all four deoxynucleotide triphosphates, the effect of which is to maintain approximately similar concentrations of all the triphosphates. [Pg.458]

When induced in macrophages, iNOS produces large amounts of NO which represents a major cytotoxic principle of those cells. Due to its affinity to protein-bound iron, NO can inhibit a number of key enzymes that contain iron in their catalytic centers. These include ribonucleotide reductase (rate-limiting in DNA replication), iron-sulfur cluster-dependent enzymes (complex I and II) involved in mitochondrial electron transport and cis-aconitase in the citric acid cycle. In addition, higher concentrations of NO,... [Pg.863]

Thiobacillus ferrooxidans function. 6, 651 Rhus vernicifera stellacyanin structure, 6,651 Riboflavin 5 -phosphate zinc complexes, 5,958 Ribonucleotide reductases cobalt, 6,642 iron, 6,634... [Pg.214]

Treatment via chelation has been observed for 2-acetylpyridine thiosemi-carbazone derivatives, which have been found to possess inhibitory activity for the RNA-polymerases of the influenza virus [133]. The iron(III) complexes were shown to be 3 to 6 times more active as inhibitors of partially purified ribonucleotide reductase (no added iron) compared to uncomplexed thiosemi-carbazone [128]. Raina and Srivastava [134] prepared and characterized low spin iron(III) complexes of 2-acetylpyridine thiosemicarbazone, [Fe(8-H)2A] (A = NO3, OH, Cl, N3, NCS or NO2), which were proposed as being seven-coordinate. However, all but the azide complex are 1 1 electrolytes in DMF and their solid ESR spectra are rhombic with the g-values being about 2.20,2.15 and 2.00. Of the six complexes, the azide ion seems to interact ihost strongly with the iron(III) center. [Pg.15]

The iron(III) complexes of 21 and 22 were shown to be 3 to 6 times more active as inhibitors of partially purified ribonucleotide reductase than un-complexed thiosemicarbazones [128]. The mechanism of antitumor action by these complexes still remains largely speculative, although some excellent preliminary studies have appeared. It has been postulated [148] that tridentate... [Pg.18]

The general influence of covalency can be qualitatively explained in a very basic MO scheme. For example, we may consider the p-oxo Fe(III) dimers that are encountered in inorganic complexes and nonheme iron proteins, such as ribonucleotide reductase. In spite of a half-filled crystal-field model), the ferric high-spin ions show quadrupole splittings as large as 2.45 mm s < 0, 5 = 0.53 mm s 4.2-77 K) [61, 62]. This is explained... [Pg.100]

A component of the ribotide reductase complex of enzymes, protein Ba, has been shown to contain two non-heme iron atoms per mole (77). This enzyme plays a vital, albeit indirect, role in the synthesis of DNA. Curiously, the lactic acid bacteria do not employ iron for the reduction of the 2 hydroxyl group of ribonucleotides. In these organisms this role has been assumed by the cobalt-containing vitamin Bi2 coenzyme (18). The mechanism of the reaction has been studied and has been shown to procede with retention of configuration (19). [Pg.150]

Figure 9. A low-molecular weight model complex for the met form of the R2 protein of ribonucleotide reductase. [After (136, 137).]... Figure 9. A low-molecular weight model complex for the met form of the R2 protein of ribonucleotide reductase. [After (136, 137).]...
The next five transition metals iron, cobalt, nickel, copper and zinc are of undisputed importance in the living world, as we know it. The multiple roles that iron can play will be presented in more detail later in Chapter 13, but we can already point out that, with very few exceptions, iron is essential for almost all living organisms, most probably because of its role in forming the amino acid radicals required for the conversion of ribonucleotides to deoxyribonucleotides in the Fe-dependent ribonucleotide reductases. In those organisms, such as Lactobacilli6, which do not have access to iron, their ribonucleotide reductases use a cobalt-based cofactor, related to vitamin B12. Cobalt is also used in a number of other enzymes, some of which catalyse complex isomerization reactions. Like cobalt, nickel appears to be much more extensively utilized by anaerobic bacteria, in reactions involving chemicals such as CH4, CO and H2, the metabolism of which was important... [Pg.8]

The binuclear iron unit consisting of a (p,-oxo(or hydroxo))bis(p.-carboxylato)diiron core is a potential common structural feature of the active sites of hemerythrin, ribonucleotide reductase, and the purple acid phosphatases. Synthetic complexes having such a binuclear core have recently been prepared their characterization has greatly facilitated the comparison of the active sites of the various proteins. The extent of structural analogy among the different forms of the proteins is discussed in light of their spectroscopic and magnetic properties. It is clear that this binuclear core represents yet another stractural motif with the versatility to participate in different protein functions. [Pg.152]

Figure 3. First shell (1.1-2.3A) EXAFS spectra of methemerythrin azide, semimethemerythrin azide, ribonucleotide reductase B2 subunit, oxidized uteroferrin-phosphate complex, and reduced uteroferrin. Figure 3. First shell (1.1-2.3A) EXAFS spectra of methemerythrin azide, semimethemerythrin azide, ribonucleotide reductase B2 subunit, oxidized uteroferrin-phosphate complex, and reduced uteroferrin.
A new class of metalloprotelns containing polynuclear, non-heme oxo-bridged iron complexes has emerged recently. Dinuclear centers are present in hemerythrin (Hr), ribonucleotide reductase (RR), purple acid phosphatases (PAP) and, possibly, methane monooxygenase (MMO) these centers as well as model compounds are reviewed in Chapter 8. [Pg.196]

The regulation of ribonucleotide reductase is complex. The substrate-specificity and activity of the enzyme are controlled by two allosteric binding sites (a and b) in the R1 subunits. ATP and dATP increase or reduce the activity of the reductase by binding at site a. Other nucleotides interact with site b, and thereby alter the enzyme s specificity. [Pg.190]

Ribonucleotide reductase is responsible for maintaining a balanced supply of the deoxyribonucleotides required for DNA synthesis. To achieve this, the regulation of the enzyme is complex. In addition to the single active site, there are two sites on the enzyme involved in regulating its activity (Figure 22.13). [Pg.296]

Ribonucleotide reductases are discussed in Chapter 16. Some are iron-tyrosinate enzymes while others depend upon vitamin B12, and reduction is at the nucleoside triphosphate level. Mammalian ribonucleotide reductase, which may be similar to that of E. coli, is regarded as an appropriate target for anticancer drugs. The enzyme is regulated by a complex set of feedback mechanisms, which apparently ensure that DNA precursors are synthesized only in amounts needed for DNA synthesis.273 Because an excess of one deoxyribonucleotide can inhibit reduction of all... [Pg.1452]

The manner in which the reduction of ribonucleotides to deoxyribonucleotides is regulated has been studied with reductases from relatively few species. The enzymes from E. coli and from Novikoff s rat liver tumor have a complex pattern of inhibition and activation (fig. 23.25). ATP activates the reduction of both CDP and UDP. As dTTP is formed by metabolism of both dCDP and dUDP, it activates GDP reduction, and as dGTP accumulates, it activates ADP reduction. Finally, accumulation of dATP causes inhibition of the reduction of all substrates. This regulation is reinforced by dGTP inhibition of the reduction of GDP, UDP, and CDP and by dTTP inhibition of the reduction of the pyrimidine substrates. Because evidence suggests that ribonucleotide reductase may be the rate-limiting step in deoxyribonucleotide synthesis in at least some animal cells, these allosteric effects may be important in controlling deoxyribonucleotide synthesis. [Pg.559]


See other pages where Ribonucleotide reductase complex is mentioned: [Pg.294]    [Pg.294]    [Pg.442]    [Pg.154]    [Pg.233]    [Pg.246]    [Pg.4]    [Pg.22]    [Pg.283]    [Pg.50]    [Pg.231]    [Pg.59]    [Pg.335]    [Pg.195]    [Pg.17]    [Pg.242]    [Pg.164]    [Pg.229]    [Pg.20]    [Pg.58]    [Pg.59]    [Pg.493]    [Pg.201]    [Pg.260]    [Pg.156]    [Pg.419]    [Pg.199]    [Pg.328]    [Pg.78]    [Pg.232]    [Pg.34]    [Pg.864]   
See also in sourсe #XX -- [ Pg.294 , Pg.297 ]




SEARCH



Ribonucleotide reductase

Ribonucleotides

Ribonucleotides reductase

© 2024 chempedia.info