Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox Emulsion Polymerization

The kinetics of aqueous dispersion polymerization differ very little from acrylonitrile bulk or emulsion polymerization. Redox initiation is normally used in commercial production of polymers for acrylic fibers. This type of initiator can generate free radicals in an aqueous medium efficiently at relatively low temperatures. The most common redox system consists of ammonium or potassium persulfate (oxidizer), sodium bisulfite (reducing agent), and ferric or ferrous iron (catalyst). This system gives the added benefit of supplying dye sites for the fiber. [Pg.826]

Polychloroprene CH2=CH-C=CH2 radical-chain emulsion polymerization, redox catalysis... [Pg.470]

Manufacturing processes have been improved by use of on-line computer control and statistical process control leading to more uniform final products. Production methods now include inverse (water-in-oil) suspension polymerization, inverse emulsion polymerization, and continuous aqueous solution polymerization on moving belts. Conventional azo, peroxy, redox, and gamma-ray initiators are used in batch and continuous processes. Recent patents describe processes for preparing transparent and stable microlatexes by inverse microemulsion polymerization. New methods have also been described for reducing residual acrylamide monomer in finished products. [Pg.139]

Emulsion Process. The emulsion polymerization process utilizes water as a continuous phase with the reactants suspended as microscopic particles. This low viscosity system allows facile mixing and heat transfer for control purposes. An emulsifier is generally employed to stabilize the water insoluble monomers and other reactants, and to prevent reactor fouling. With SAN the system is composed of water, monomers, chain-transfer agents for molecular weight control, emulsifiers, and initiators. Both batch and semibatch processes are employed. Copolymerization is normally carried out at 60 to 100°C to conversions of - 97%. Lower temperature polymerization can be achieved with redox-initiator systems (51). [Pg.193]

Wheieas the BPO—DMA ledox system works well for curing of unsaturated polyester blends, it is not a very effective system for initiating vinyl monomer polymerizations, and therefore it generally is not used in such appHcations (34). However, combinations of amines (eg, DMA) and acyl sulfonyl peroxides (eg, ACSP) are very effective initiator systems at 0°C for high conversion suspension polymerizations of vinyl chloride (35). BPO has also been used in combination with ferrous ammonium sulfate to initiate emulsion polymerizations of vinyl monomers via a redox reaction (36). [Pg.224]

Hydroperoxides are generally used with reducing agents, eg, iron salts, in redox emulsion polymerization systems. [Pg.134]

In addition to appHcations in dyeing, sodium formaldehyde sulfoxylate is used as a component of the redox system in emulsion polymerization of styrene—butadiene mbber recipes. [Pg.151]

Redox initiator systems are normally used in the emulsion polymerization of VDC to develop high rates at low temperatures. Reactions must be carried out below - 80° C to prevent degradation of the polymer. Poly(vinyHdene chloride) in emulsion is also attacked by aqueous base. Therefore, reactions should be carried out at low pH. [Pg.429]

A typical recipe for batch emulsion polymerization is shown in Table 13. A reaction time of 7—8 h at 30°C is requited for 95—98% conversion. A latex is produced with an average particle diameter of 100—150 nm. Other modifying ingredients may be present, eg, other colloidal protective agents such as gelatin or carboxymethylcellulose, initiator activators such as redox types, chelates, plasticizers, stabilizers, and chain-transfer agents. [Pg.439]

Emulsion Polymerization. In this method, polymerization is initiated by a water-soluble catalyst, eg, a persulfate or a redox system, within the micelles formed by an emulsifying agent (11). The choice of the emulsifier is important because acrylates are readily hydrolyzed under basic conditions (11). As a consequence, the commonly used salts of fatty acids (soaps) are preferably substituted by salts of long-chain sulfonic acids, since they operate well under neutral and acid conditions (12). After polymerization is complete the excess monomer is steam-stripped, and the polymer is coagulated with a salt solution the cmmbs are washed, dried, and finally baled. [Pg.474]

Simplified nitrile mbber polymerization recipes are shown in Table 2 for "cold" and "hot" polymerization. Typically, cold polymerization is carried out at 5°C and hot at 30°C. The original technology for emulsion polymerization was similar to the 30°C recipe, and the redox initiator system that allowed polymerization at lower temperature was developed shortiy after World War II. The latter uses a reducing agent to activate the hydroperoxide initiator and soluble iron to reactivate the system by a reduction—oxidation mechanism as the iron cycles between its ferrous and ferric states. [Pg.519]

Organic peroxide-aromatic tertiary amine system is a well-known organic redox system 1]. The typical examples are benzoyl peroxide(BPO)-N,N-dimethylani-line(DMA) and BPO-DMT(N,N-dimethyl-p-toluidine) systems. The binary initiation system has been used in vinyl polymerization in dental acrylic resins and composite resins [2] and in bone cement [3]. Many papers have reported the initiation reaction of these systems for several decades, but the initiation mechanism is still not unified and in controversy [4,5]. Another kind of organic redox system consists of organic hydroperoxide and an aromatic tertiary amine system such as cumene hydroperoxide(CHP)-DMT is used in anaerobic adhesives [6]. Much less attention has been paid to this redox system and its initiation mechanism. A water-soluble peroxide such as persulfate and amine systems have been used in industrial aqueous solution and emulsion polymerization [7-10], yet the initiation mechanism has not been proposed in detail until recently [5]. In order to clarify the structural effect of peroxides and amines including functional monomers containing an amino group, a polymerizable amine, on the redox-initiated polymerization of vinyl monomers and its initiation mechanism, a series of studies have been carried out in our laboratory. [Pg.227]

Redox initiation is commonly employed in aqueous emulsion polymerization. Initiator efficiencies obtained with redox initiation systems in aqueous media are generally low. One of the reasons for this is the susceptibility of the initially formed radicals to undergo further redox chemistry. For example, potential propagating radicals may be oxidized to carbonium ions (Scheme 3.44). The problem is aggravated by the low solubility of the monomers (e.g. M VIA. S) in the aqueous phase. [Pg.95]

The early history of redox initiation has been described by Bacon.23 The subject has also been reviewed by Misra and Bajpai,207 Bamford298 and Sarac.2,0 The mechanism of redox initiation is usually bimolecular and involves a single electron transfer as the essential feature of the mechanism that distinguishes it from other initiation processes. Redox initiation systems are in common use when initiation is required at or below ambient temperature and drey are frequently used for initiation of emulsion polymerization. [Pg.104]

Emulsion polymerization is the most important process for production of elastic polymers based on butadiene. Copolymers of butadiene with styrene and acrylonitrile have attained particular significance. Polymerized 2-chlorobutadiene is known as chloroprene rubber. Emulsion polymerization provides the advantage of running a low viscosity during the entire time of polymerization. Hence the temperature can easily be controlled. The polymerizate is formed as a latex similar to natural rubber latex. In this way the production of mixed lattices is relieved. The temperature of polymerization is usually 50°C. Low-temperature polymerization is carried out by the help of redox systems at a temperature of 5°C. This kind of polymerization leads to a higher amount of desired trans-1,4 structures instead of cis-1,4 structures. Chloroprene rubber from poly-2-chlorbutadiene is equally formed by emulsion polymerization. Chloroprene polymerizes considerably more rapidly than butadiene and isoprene. Especially in low-temperature polymerization emulsifiers must show good solubility and... [Pg.602]

Copolymers of a cationic monomer and a vinyl alkoxysilane may be prepared by conventional vinyl polymerization techniques. These techniques include solution polymerization in water and emulsion polymerization with either free radical initiators or redox initiators. [Pg.338]

Emulsion Polymerizations, eg. vinyl acetate [VAc]/ABDA, VAc/ethylene [VAE]/ABDA, butyl acrylate [BA]/ABDA, were done under nitrogen using mixed anionic/nonlonic or nonionic surfactant systems with a redox Initiator, eg. t-butyl hydroperoxide plus sodium formaldehyde sulfoxylate. Base monomer addition was batch or batch plus delay comonomer additions were delay. [Pg.470]

The initiators used in emulsion polymerization are water-soluble initiators such as potassium or ammonium persulfate, hydrogen peroxide, and 2,2 -azobis(2-amidinopropane) dihydrochloride. Partially water-soluble peroxides such a succinic acid peroxide and f-butyl hydroperoxide and azo compounds such as 4,4 -azobis(4-cyanopentanoic acid) have also been used. Redox systems such as persulfate with ferrous ion (Eq. 3-38a) are commonly used. Redox systems are advantageous in yielding desirable initiation rates at temperatures below 50°C. Other useful redox systems include cumyl hydroperoxide or hydrogen peroxide with ferrous, sulfite, or bisulfite ion. [Pg.363]

With emulsion polymerization it is possible to prepare very high-molecular-weight polymers at high rates of polymerization. The required reaction temperatures are low and can even be below 20 °C when redox systems are used for initiation (see Examples 3-11). Polymer emulsions with solid contents of 50% and higher can be very stable. In many cases, e.g., poly(vinyl acetate), they are directly used as paints (paint latices), coatings, or adhesives (see Sect. 2.5.4). [Pg.63]

Most emulsion polymerizations are performed with water-soluble initiators however, the following experiment describes a redox polymerization where one component (dibenzoyl peroxide) is water-insoluble, while the other is water-soluble. [Pg.179]

These superabsorbents are synthesized via free radical polymerization of acrylic acid or its salts in presence of a crosslinker (crosslinking copolymerization). Initiators are commonly used, water-soluble compounds (e.g., peroxodi-sulfates, redox systems). As crosslinking comonomers bis-methacrylates or N,hT-methylenebis-(acrylamide) are mostly applied. The copolymerization can be carried out in aqueous solution (see Example 5-11 or as dispersion of aqueous drops in a hydrocarbon (inverse emulsion polymerization, see Sect. 2.2.4.2). [Pg.349]

Advantages of emulsion polymerization are rapidity and production of high-molecular-weight polymers in a system of relatively low viscosity. Difficulties in agitation, heat transfer, and transfer of materials are minimized. The handling of hazardous solvents is eliminated. The two principal variations in technique used for emulsion polymerization are the redox and the reflux methods. [Pg.17]

The most commonly used water-soluble initiator is the potassium, ammonium, or sodium salt of peroxodisulfates. Redox initiators (Fe2+salt/peroxodisul-fate, etc.) are used for polymerization at low temperatures. Oil-soluble initiators, such as azo compounds, benzoyl peroxides, etc., are also used in emulsion polymerization. They are, however, less efficient than water-soluble peroxodisulfates. This results from the immobilization of oil-soluble initiator in polymer matrix, the cage effect, the induced decomposition of initiator in the particle interior, and the deactivation of radicals during des orption/re-entry events [14, 15]. [Pg.13]


See other pages where Redox Emulsion Polymerization is mentioned: [Pg.278]    [Pg.278]    [Pg.228]    [Pg.497]    [Pg.464]    [Pg.68]    [Pg.170]    [Pg.195]    [Pg.196]    [Pg.196]    [Pg.94]    [Pg.86]    [Pg.86]    [Pg.216]    [Pg.32]    [Pg.41]    [Pg.43]    [Pg.165]    [Pg.442]    [Pg.841]    [Pg.358]    [Pg.228]    [Pg.156]   
See also in sourсe #XX -- [ Pg.41 ]




SEARCH



Emulsion polymerization

Emulsions, polymeric

Polymerization emulsion polymerizations

Redox polymerization

© 2024 chempedia.info