Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanism oxidation-reduction

The mechanisms utilized by plants and mammals in the metabolism of xenoblotlcs are remeirkably similar. Similar classes of compounds or functional groups are frequently metabolized by comparable mechanisms. Oxidation, reduction, hydrolysis, and conjugation reactions occur with similar frequency in both. In most instances, however. [Pg.62]

Much of tills chapter concerns ET reactions in solution. However, gas phase ET processes are well known too. See figure C3.2.1. The Tiarjioon mechanism by which halogens oxidize alkali metals is fundamentally an electron transfer reaction [2]. One might guess, from tliis simple reaction, some of tlie stmctural parameters tliat control ET rates relative electron affinities of reactants, reactant separation distance, bond lengtli changes upon oxidation/reduction, vibrational frequencies, etc. [Pg.2972]

Two methods are used to measure pH electrometric and chemical indicator (1 7). The most common is electrometric and uses the commercial pH meter with a glass electrode. This procedure is based on the measurement of the difference between the pH of an unknown or test solution and that of a standard solution. The instmment measures the emf developed between the glass electrode and a reference electrode of constant potential. The difference in emf when the electrodes are removed from the standard solution and placed in the test solution is converted to a difference in pH. Electrodes based on metal—metal oxides, eg, antimony—antimony oxide (see Antimony AND ANTIMONY ALLOYS Antimony COMPOUNDS), have also found use as pH sensors (8), especially for industrial appHcations where superior mechanical stabiUty is needed (see Sensors). However, because of the presence of the metallic element, these electrodes suffer from interferences by oxidation—reduction systems in the test solution. [Pg.464]

The mechanism for the formation of siUca is complex because oxidation, reduction, and hydrolysis pathways are all possible. [Pg.32]

The reduction of iminium salts can be achieved by a variety of methods. Some of the methods have been studied primarily on quaternary salts of aromatic bases, but the results can be extrapolated to simple iminium salts in most cases. The reagents available for reduction of iminium salts are sodium amalgam (52), sodium hydrosulfite (5i), potassium borohydride (54,55), sodium borohydride (56,57), lithium aluminum hydride (5 ), formic acid (59-63), H, and platinum oxide (47). The scope and mechanism of reduction of nitrogen heterocycles with complex metal hydrides has been recently reviewed (5,64), and will be presented here only briefly. [Pg.185]

These results may easily be rationalized by assuming that the formation of hydroxy sulphoxides 91, 92 and 93 from hydroperoxysulphides 89 and 90 is an intramolecular oxidation-reduction reaction proceeding through a five-membered transition state 94. However, an alternative intermolecular mechanism in which the approach of the oxidant is directed by the hydroperoxy or the hydroxy function in the reductant cannot be excluded. [Pg.257]

This review is concerned with the formation of cation radicals and anion radicals from sulfoxides and sulfones. First the clear-cut evidence for this formation is summarized (ESR spectroscopy, pulse radiolysis in particular) followed by a discussion of the mechanisms of reactions with chemical oxidants and reductants in which such intermediates are proposed. In this section, the reactions of a-sulfonyl and oc-sulfinyl carbanions in which the electron transfer process has been proposed are also dealt with. The last section describes photochemical reactions involving anion and cation radicals of sulfoxides and sulfones. The electrochemistry of this class of compounds is covered in the chapter written by Simonet1 and is not discussed here some electrochemical data will however be used during the discussion of mechanisms (some reduction potential values are given in Table 1). [Pg.1048]

Although the exact chemical mechanism for the direct oxide reduction reaction has not yet been fully characterized, it has been well established that the reaction goes to completion when excess calcium is present, sufficient CaCl2 is available to dissolve the CaO produced, and adequate stirring is used. As calcium metal is soluble to about 1 wt% in CaC12 at 835°C, excess Ca insures that the reaction is driven to completion by mass-action effects. [Pg.382]

Taube, H. (1968). Mechanisms of oxidation-reduction reactions. /. Chem. Educ. 45,453-461. [Pg.105]

In Part 2 of this book, we shall be directly concerned with organic reactions and their mechanisms. The reactions have been classified into 10 chapters, based primarily on reaction type substitutions, additions to multiple bonds, eliminations, rearrangements, and oxidation-reduction reactions. Five chapters are devoted to substitutions these are classified on the basis of mechanism as well as substrate. Chapters 10 and 13 include nucleophilic substitutions at aliphatic and aromatic substrates, respectively, Chapters 12 and 11 deal with electrophilic substitutions at aliphatic and aromatic substrates, respectively. All free-radical substitutions are discussed in Chapter 14. Additions to multiple bonds are classified not according to mechanism, but according to the type of multiple bond. Additions to carbon-carbon multiple bonds are dealt with in Chapter 15 additions to other multiple bonds in Chapter 16. One chapter is devoted to each of the three remaining reaction types Chapter 17, eliminations Chapter 18, rearrangements Chapter 19, oxidation-reduction reactions. This last chapter covers only those oxidation-reduction reactions that could not be conveniently treated in any of the other categories (except for oxidative eliminations). [Pg.381]

In this chapter, we discuss free-radical substitution reactions. Free-radical additions to unsaturated compounds and rearrangements are discussed in Chapters 15 and 18, respectively. In addition, many of the oxidation-reduction reactions considered in Chapter 19 involve free-radical mechanisms. Several important types of free-radical reactions do not usually lead to reasonable yields of pure products and are not generally treated in this book. Among these are polymerizations and high-temperature pyrolyses. [Pg.896]

The last two decades have seen a growing interest in the mechanism of inorganic reactions in solution. Nowhere is this activity more evident than in the topic covered by this review the oxidation-reduction processes of metal complexes. This subject has been reviewed a number of times previously, notably by Taube (1959), Halpern (1961), Sutin (1966), and Sykes (1967). Other articles and books concerned, wholly or partly, with the topic include those by Stranks, Fraser , Strehlow, Reynolds and Lumry , Basolo and Pearson, and Candlin et al ° Important recent articles on the theoretical aspects are those by Marcus and Ruff. Elementary accounts of redox reactions are included in the books by Edwards , Sykes and Benson . The object of the present review is to provide a more detailed survey of the experimental work than has hitherto been available. [Pg.153]

Co(Y)CP and Co(HY)Cl react with Fe " " at comparable rates. Comparisons are instructive between this redox reaction and other cation-catalysed chloride-abstraction reactions which occur without simultaneous oxidation-reduction. The intimate mechanisms are likely to be... [Pg.206]

Although in the fifties of the last century it had already been recognized that in several oxidation-reduction reactions the co-existence principle i.e. the assumption that the individual processes take place independently of each other) was not valid and to date many examples of chemical induction have been found, there are only a few cases known where the mechanism of the induced reaction has been satisfactorily elucidated. There are several reasons for this. Some of the induced reactions take place too rapidly to be investigated by conventional kinetical methods in other cases a thorough investigation was frustrated by the lack of appropriate analytical methods. [Pg.519]

This review has highlighted the key contributions of modern surface science to the understanding of the kinetics and mechanism of nitrogen oxide reduction catalysis. As discussed above, the conversion of NO has been taken as the standard to represent other NOx, and CO has typically been used as the reducing agent in these studies. The bulk of the work has been carried out on rhodium and palladium surfaces, the most common transition metals used in three-way catalytic converters. [Pg.90]

As already mentioned, macular zeaxanthin comprises two stereoisomers, the normal dietary (3/(,37()-/caxanthin and (3f ,3 S)-zeaxanthin(=(meyo)-zeaxanthin), of which the latter is not normally a dietary component (Bone et al. 1993) and is not found in any other compartment of the body except in the retina. The concentration of (tneso)-zeaxanthin in the retina decreases from a maximum within the central fovea to a minimum in the peripheral retina, similar to the situation with (3/ ,37 )-zeaxanthin. This distribution inversely reflects the relative concentration of lutein in the retina and gave rise to a hypothesis (Bone et al. 1997) that (meso)-zeaxanthin is formed in the retina from lutein. This was confirmed by an experiment in which xanthophyll-depleted monkeys had been supplemented with chemically pure lutein or (3/ ,37 )-zeaxanthin (Johnson et al. 2005). (Meyo)-Zeaxanthin was exclusively detected in the retina of lutein-fed monkeys but not in retinas of zeaxanthin-fed animals, demonstrating that it is a retina-specific metabolite of lutein only. The mechanism of its formation has not been established but may involve oxidation-reduction reactions that are mediated photochemically, enzymatically, or both. Thus, (meso)-zeaxanthin is a metabolite unique to the primate macula. [Pg.262]

Katayama, H., Ohno, T., Yamauchi, M., Matsuo, M., Kawamura, T., and Ibaraki, T., Mechanism of Iron Oxide Reduction and Heat Transfer in the Smelting Reduction Process with a Thick Layer of Slag, ISIJ Int., 32 95 (1992)... [Pg.671]

Nitrosoarenes are readily formed by the oxidation of primary N-hydroxy arylamines and several mechanisms appear to be involved. These include 1) the metal-catalyzed oxidation/reduction to nitrosoarenes, azoxyarenes and arylamines (144) 2) the 02-dependent, metal-catalyzed oxidation to nitrosoarenes (145) 3) the 02-dependent, hemoglobin-mediated co-oxidation to nitrosoarenes and methe-moglobin (146) and 4) the 0 2-dependent conversion of N-hydroxy arylamines to nitrosoarenes, nitrosophenols and nitroarenes (147,148). Each of these processes can involve intermediate nitroxide radicals, superoxide anion radicals, hydrogen peroxide and hydroxyl radicals, all of which have been observed in model systems (149,151). Although these radicals are electrophilic and have been suggested to result in DNA damage (151,152), a causal relationship has not yet been established. Nitrosoarenes, on the other hand, are readily formed in in vitro metabolic incubations (2,153) and have been shown to react covalently with lipids (154), proteins (28,155) and GSH (17,156-159). Nitrosoarenes are also readily reduced to N-hydroxy arylamines by ascorbic acid (17,160) and by reduced pyridine nucleotides (9,161). [Pg.360]

SCHEME 1 Schematic illustration of the biological process of 02 dismutation into 02 and H202 catalyzed by Cu, Zn-SOD via a cyclic oxidation-reduction electron transfer mechanism. (Reprinted from [98], with permission from Elsevier.)... [Pg.173]

Theoretically, according to the mechanism of biological azo dye reduction, the processes of biological decolorization are oxidation-reduction reactions, in which transfer of electrons match with the proton flow by the help of coenzymes, such as NADPH/NADP+ and NADH/NAD+. The oxidation-reduction potentials of the couples of NADPH/NADP+ and NADH/NAD+ are -324 and -320 mV, respectively [25, 46]. The least AGo value of the conversion NADPH/NADP+ and NADH/NAD+ is 44 kJ [47]. Therefore, —93 mV, which is obtained from (1), could be considered as a rough limited ORP value for ordinary primary electron donors of the third mechanism of biological azo dye reduction. This was demonstrated by the results of many researches (Table 1). Hence, the observed failure of cyanocobala-min [30] and ethyl viologen [48] to act as a mediator is most probably due to their too low Ed values 530 and —480 mV, respectively. [Pg.96]

IV. The Chemical Mechanism of Pyridine N-oxide Reduction A. The Initial Step... [Pg.168]


See other pages where Mechanism oxidation-reduction is mentioned: [Pg.713]    [Pg.2728]    [Pg.29]    [Pg.624]    [Pg.823]    [Pg.464]    [Pg.193]    [Pg.173]    [Pg.25]    [Pg.154]    [Pg.9]    [Pg.76]    [Pg.64]    [Pg.145]    [Pg.201]    [Pg.140]    [Pg.173]    [Pg.209]    [Pg.213]    [Pg.175]    [Pg.209]    [Pg.157]   
See also in sourсe #XX -- [ Pg.277 ]




SEARCH



Cytochrome oxidation reduction mechanism

Mechanism, oxidation-reduction formation

Mechanisms direct oxide reduction reaction

Mechanisms oxidation-reduction, addition-elimination

Mechanisms oxidation-reduction, displacement

Mechanisms oxidation-reduction, hydride transfer

Mechanisms oxidation-reduction, hydrogen atom transfer

Nitric Oxide Reduction, Oxidation, and Mechanisms of Nitrosation

Nitric oxide reduction— mechanism

Noncomplementary oxidation-reduction mechanisms

Oxidation and Reduction Mechanisms

Oxidation reactions reduction mechanisms, basic principles

Oxidation-reduction Marcus mechanism

Oxidation-reduction Taube mechanism

Oxidation-reduction mechanism epimerization

Oxidation-reduction reactions inner sphere mechanism

Oxidation-reduction reactions outer sphere mechanism

Oxidation-reduction reactions transfer mechanisms

Oxidation-reduction, radical mechanism

Reduction mechanism of oxides

Reduction, mechanism

Reductive mechanism

The Chemical Mechanism of Pyridine N-oxide Reduction

© 2024 chempedia.info