Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Method electrospray ionization

Summarizing, the HPLC-DAD method of Kursinszki et al. [40] is reliable, simple, and sensitive. It can be used for determination of lobeUne in the extracts of L. inflata. LC-MS-MS quadropole with electrospray ionization method was very suitable for the identification of lobeline and related piperidine alkaloids in L. inflata. [Pg.330]

For identification of alkaloids of plant obtained by vegetative micro propagation, the LC-MS/MS quadropole with electrospray ionization method was very suitable. In plant cultivated on field, 52 alkaloids (lobeline and related piperidine alkaloids) were found and identified. Of them, as main component, was identified the 8-ethyl-lO-phenyl-lobelienonol isomer of molecular ion [M + H]" of miz 288 (Fig. 11.29), [52]. [Pg.331]

A variety of mass spectrometric techniques is available and we focus on electron ionization (or electron impact), fast atom bombardment, matrix-assisted laser desorption ionization time-of-flight and electrospray ionization methods, all of which are routinely available. [Pg.93]

A connnon feature of all mass spectrometers is the need to generate ions. Over the years a variety of ion sources have been developed. The physical chemistry and chemical physics communities have generally worked on gaseous and/or relatively volatile samples and thus have relied extensively on the two traditional ionization methods, electron ionization (El) and photoionization (PI). Other ionization sources, developed principally for analytical work, have recently started to be used in physical chemistry research. These include fast-atom bombardment (FAB), matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ES). [Pg.1329]

FigureBl.7.2. Schematic representations of alternative ionization methods to El and PI (a) fast-atom bombardment in which a beam of keV atoms desorbs solute from a matrix (b) matrix-assisted laser desorption ionization and (c) electrospray ionization. FigureBl.7.2. Schematic representations of alternative ionization methods to El and PI (a) fast-atom bombardment in which a beam of keV atoms desorbs solute from a matrix (b) matrix-assisted laser desorption ionization and (c) electrospray ionization.
The advent of atmospheric-pressure ionization (API) provided a method of ionizing labile and nonvolatile substances so that they could be examined by mass spectrometry. API has become strongly linked to HPLC as a basis for ionizing the eluant on its way into the mass spectrometer, although it is also used as a stand-alone inlet for introduction of samples. API is important in thermospray, plasmaspray, and electrospray ionization (see Chapters 8 and 11). [Pg.61]

Aerosols can be produced as a spray of droplets by various means. A good example of a nebulizer is the common household hair spray, which produces fine droplets of a solution of hair lacquer by using a gas to blow the lacquer solution through a fine nozzle so that it emerges as a spray of small droplets. In use, the droplets strike the hair and settle, and the solvent evaporates to leave behind the nonvolatile lacquer. For mass spectrometry, a spray of a solution of analyte can be produced similarly or by a wide variety of other methods, many of which are discussed here. Chapters 8 ( Electrospray Ionization ) and 11 ( Thermospray and Plasmaspray Interfaces ) also contain details of droplet evaporation and formation of ions that are relevant to the discussion in this chapter. Aerosols are also produced by laser ablation for more information on this topic, see Chapters 17 and 18. [Pg.138]

Most biochemical analyses by MS use either electrospray ionization (ESI) or matrix-assisted laser desorption ionization (MALD1), typically linked to a time-of-flight (TOF) mass analyzer. Both ESI and MALDl are "soft" ionization methods that produce charged molecules with little fragmentation, even with biological samples of very high molecular weight. [Pg.417]

ESI (Section 12.4) Electrospray ionization, a mild method for ionizing a molecule so that fragmentation is minimized during mass spectrometry. [Pg.1241]

Electrospray ionization mass spectrometry (ESI-MS) is an analytical method for mass determination of ionized molecules. It is a commonly used method for soft ionization of peptides and proteins in quadmpole, ion-trap, or time-of-flight mass spectrometers. The ionization is performed by application of a high voltage to a stream of liquid emitted from a capillaty. The highly charged droplets are shrunk and the resulting peptide or protein ions are sampled and separated by the mass spectrometer. [Pg.458]

Matrix-assisted laser desorption mass spectrometry (MALDI-MS) is, after electrospray ionization (ESI), the second most commonly used method for ionization of biomolecules in mass spectrometry. Samples are mixed with a UV-absorbing matrix substance and are air-dried on a metal target. Ionization and desorption of intact molecular ions are performed using a UV laser pulse. [Pg.748]

Peptide mass fingeiprinting (PMF) is a mass spectrometry based method for protein identification. The protein is cleaved by an enzyme with high specificity (trypsin, Lys-C, Asp-N, etc.) or chemical (CNBr). The peptide mixture generated is analyzed by matrix-assisted laser desorp-tion/ionization (MALDI) or electrospray ionization (ESI)... [Pg.936]

Two relatively new techniques, matrix assisted laser desorption ionization-lime of flight mass spectrometry (MALDI-TOF) and electrospray ionization (FS1), offer new possibilities for analysis of polymers with molecular weights in the tens of thousands. PS molecular weights as high as 1.5 million have been determined by MALDI-TOF. Recent reviews on the application of these techniques to synthetic polymers include those by Ilantoif54 and Nielen.555 The methods have been much used to provide evidence for initiation and termination mechanisms in various forms of living and controlled radical polymerization.550 Some examples of the application of MALDI-TOF and ESI in end group determination are provided in Table 3.12. The table is not intended to be a comprehensive survey. [Pg.143]

Ionization methods that may be utihzed in LC-MS include electron ionization (El), chemical ionization (Cl), fast-atom bombardment (FAB), thermospray (TSP), electrospray (ESI) and atmospheric-pressure chemical ionization (APCI). [Pg.52]

For many years, electron ionization, then more usually known as electron impact, was the only ionization method used in analytical mass spectrometry and the spectra encountered showed exclusively the positively charged species produced during this process. Electron ionization also produces negatively charged ions although these are not usually of interest as they have almost no structural significance. Other ionization techniques, such as Cl, FAB, thermospray, electrospray and APCI, however, can be made to yield negative ions which are of analytical utility. [Pg.56]

Electrospray is an ionization method that overcomes both of the problems previously described. [Pg.157]

In contrast to most other ionization methods, the majority of ions produced by electrospray are multiply charged. This is of great significance as the mass spectrometer measures the m/z (mass-to-charge) ratio of an ion and the mass range of an instrument may therefore be effectively extended by a factor equivalent to the number of charges residing on the analyte molecule, i.e. an ion of m/z 1000 with... [Pg.157]

Electrospray ionization occurs by the same four steps as listed above for thermospray (see Section 4.6). In contrast to thermospray, and most other ionization methods nsed in mass spectrometry, it shonld be noted that electrospray ionization nnnsnally takes place at atmospheric pressure. A similar process carried out under vacuum is known as electrohydrodynamic ionization and gives rise to qnite different analytical results. This technique has not been developed into a commercial LC-MS interface and will not be considered further. [Pg.158]

Electrospray ionization, in contrast to the majority of other ionization methods employed in mass spectrometry, produces predominantly multiply charged ions of the intact solute molecule. This effectively extends the mass range of the mass spectrometer and allows the study of molecules with molecular weights well outside its normal range. [Pg.179]

Electrospray is a soft-ionization method prodncing intact molecular species and structural information is not usually available. Electrospray sources are capable of producing structural information from cone-voltage fragmentation but these spectra are not always easily interpretable. Experimentally, the best solution is to use a mass spectrometer capable of MS-MS operation but this has not inconsequential financial implications. [Pg.180]

In this study, the effect of mobile-phase flow rate, or more accurately, the rate of flow of liquid into the LC-MS interface, was not considered but as has been pointed out earlier in Sections 4.7 and 4.8, this is of great importance. In particular, it determines whether electrospray ionization functions as a concentration-or mass-flow-sensitive detector and may have a significant effect on the overall sensitivity obtained. Both of these are of great importance when considering the development of a quantitative analytical method. [Pg.192]

In general terms, electrospray ionization is considered to be concentration-sensitive at Tow flow rates and mass-flow-sensitive at high flow rates, while APCI is considered to be mass-flow-sensitive. Low and high are both subjective terms and require investigation as part of method validation. [Pg.192]

If a high -molecular-weight compound is being studied by LC-MS, the analyst has little choice in the ionization method to use, with atmospheric-pressure chemical ionization (APCl) being wholly inappropriate. However, when low -molecular-weight componnds are involved, both electrospray ionization and APCl are potentially of value. [Pg.242]

In general terms, electrospray is a more effective ionization method for componnds of higher polarity than is APCl, although higher is a very subjective term and there are a range of compounds for which both techniques are applicable. [Pg.246]

A method has been reported for the quantification of five fungicides (shown in Figure 5.39) used to control post-harvest decay in citrus fruits to ensure that unacceptable levels of these are not present in fruit entering the food chain [26]. A survey of the literature showed that previously [27] APCl and electrospray ionization (ESI) had been compared for the analysis of ten pesticides, including two of the five of interest, i.e. carbendazim and thiabendazole, and since it was found that APCl was more sensitive for some of these and had direct flow rate compatibility with the HPLC system being used, APCl was chosen as the basis for method development. [Pg.246]

The most recent progress in MS analysis of chlorophylls has been obtained with the development of atmospheric ionization methods such as atmospheric pressure chemical ionization (APCl) and electrospray ionization (ESI). These techniques have demonstrated much more sensitivity than thermospray ionization, detecting chloro-... [Pg.438]

The method for chloroacetanilide soil metabolites in water determines concentrations of ethanesulfonic acid (ESA) and oxanilic acid (OXA) metabolites of alachlor, acetochlor, and metolachlor in surface water and groundwater samples by direct aqueous injection LC/MS/MS. After injection, compounds are separated by reversed-phase HPLC and introduced into the mass spectrometer with a TurboIonSpray atmospheric pressure ionization (API) interface. Using direct aqueous injection without prior SPE and/or concentration minimizes losses and greatly simplifies the analytical procedure. Standard addition experiments can be used to check for matrix effects. With multiple-reaction monitoring in the negative electrospray ionization mode, LC/MS/MS provides superior specificity and sensitivity compared with conventional liquid chromatography/mass spectrometry (LC/MS) or liquid chromatography/ultraviolet detection (LC/UV), and the need for a confirmatory method is eliminated. In summary,... [Pg.349]


See other pages where Method electrospray ionization is mentioned: [Pg.108]    [Pg.257]    [Pg.117]    [Pg.57]    [Pg.108]    [Pg.257]    [Pg.117]    [Pg.57]    [Pg.1331]    [Pg.60]    [Pg.160]    [Pg.277]    [Pg.281]    [Pg.139]    [Pg.18]    [Pg.1029]    [Pg.176]    [Pg.177]    [Pg.279]    [Pg.41]    [Pg.146]    [Pg.468]    [Pg.345]    [Pg.442]   
See also in sourсe #XX -- [ Pg.99 , Pg.122 , Pg.125 , Pg.134 , Pg.135 , Pg.136 , Pg.137 , Pg.138 , Pg.139 ]

See also in sourсe #XX -- [ Pg.99 , Pg.122 , Pg.125 , Pg.134 , Pg.135 , Pg.136 , Pg.137 , Pg.138 , Pg.139 ]




SEARCH



Analytical methods electrospray ionization

Electrospray ionization

© 2024 chempedia.info