Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic spectroscopy fluorescence

A popular electron-based teclmique is Auger electron spectroscopy (AES), which is described in section Bl.25.2.2. In AES, a 3-5 keV electron beam is used to knock out iimer-shell, or core, electrons from atoms in the near-surface region of the material. Core holes are unstable, and are soon filled by either fluorescence or Auger decay. In the Auger... [Pg.307]

A number of surface-sensitive spectroscopies rely only in part on photons. On the one hand, there are teclmiques where the sample is excited by electromagnetic radiation but where other particles ejected from the sample are used for the characterization of the surface (photons in electrons, ions or neutral atoms or moieties out). These include photoelectron spectroscopies (both x-ray- and UV-based) [89, 9Q and 91], photon stimulated desorption [92], and others. At the other end, a number of methods are based on a particles-in/photons-out set-up. These include inverse photoemission and ion- and electron-stimulated fluorescence [93, M]- All tirese teclmiques are discussed elsewhere in tliis encyclopaedia. [Pg.1795]

The section on Spectroscopy has been expanded to include ultraviolet-visible spectroscopy, fluorescence, Raman spectroscopy, and mass spectroscopy. Retained sections have been thoroughly revised in particular, the tables on electronic emission and atomic absorption spectroscopy, nuclear magnetic resonance, and infrared spectroscopy. Detection limits are listed for the elements when using flame emission, flame atomic absorption, electrothermal atomic absorption, argon ICP, and flame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear properties of the elements, proton chemical shifts and coupling constants, and similar material for carbon-13, boron-11, nitrogen-15, fluorine-19, silicon-29, and phosphorus-31. [Pg.1287]

Acronyms abound in phofoelecfron and relafed specfroscopies buf we shall use only XPS, UPS and, in Sections 8.2 and 8.3, AES (Auger elecfron specfroscopy), XRF (X-ray fluorescence) and EXAFS (exfended X-ray absorption fine sfmcfure). In addition, ESCA is worth mentioning, briefly. If sfands for elecfron specfroscopy for chemical analysis in which elecfron specfroscopy refers fo fhe various branches of specfroscopy which involve fhe ejection of an elecfron from an atom or molecule. Flowever, because ESCA was an acronym infroduced by workers in fhe field of XPS if is mosf often used to refer to XPS rather than to electron spectroscopy in general. [Pg.290]

Instrumental Methods for Bulk Samples. With bulk fiber samples, or samples of materials containing significant amounts of asbestos fibers, a number of other instmmental analytical methods can be used for the identification of asbestos fibers. In principle, any instmmental method that enables the elemental characterization of minerals can be used to identify a particular type of asbestos fiber. Among such methods, x-ray fluorescence (xrf) and x-ray photo-electron spectroscopy (xps) offer convenient identification methods, usually from the ratio of the various metal cations to the siUcon content. The x-ray diffraction technique (xrd) also offers a powerfiil means of identifying the various types of asbestos fibers, as well as the nature of other minerals associated with the fibers (9). [Pg.352]

Cathodoluminescence (CL), i.e., the emission of light as the result of electron-beam bombardment, was first reported in the middle of the nineteenth century in experiments in evacuated glass tubes. The tubes were found to emit light when an electron beam (cathode ray) struck the glass, and subsequendy this phenomenon led to the discovery of the electron. Currendy, cathodoluminescence is widely used in cathode-ray tube-based (CRT) instruments (e.g., oscilloscopes, television and computer terminals) and in electron microscope fluorescent screens. With the developments of electron microscopy techniques (see the articles on SEM, STEM and TEM) in the last several decades, CL microscopy and spectroscopy have emerged as powerfirl tools for the microcharacterization of the electronic propenies of luminescent materials, attaining spatial resolutions on the order of 1 pm and less. Major applications of CL analysis techniques include ... [Pg.149]

Accompanying the photoemission process, electron reorganisation can result in the ejection of a photon (X-ray fluorescence) or internal electronic reorganisation leading to the ejection of a second electron. The latter is referred to as the Auger process and is the basis of Auger electron spectroscopy (AES). It was Harris at General Electric s laboratories at Schenectady, USA, who first realised that a conventional LEED experiment could be modified easily to... [Pg.18]

Auger electron spectroscopy Phosphorous/nitrogen-selective alkali/flame ionisation detector Atomic force microscopy Atomic fluorescence spectrometry All-glass heated inlet system... [Pg.751]

There are two major experimental techniques that can be used to analyze hydrogen bonding in noncrystalline polymer systems. The first is based on thermodynamic measurements which can be related to molecular properties by using statistical mechanics. The second, and much more powerful, way to elucidate the presence and nature of hydrogen bonds in amorphous polymers is by using spectroscopy (Coleman et al., 1991). From the present repertoire of spectroscopic techniques which includes IR, Raman, electronic absorption, fluorescence, and magnetic resonance spectroscopy, the IR is by far the most sensitive to the presence of hydrogen bonds (Coleman et al., 1991). [Pg.97]

Older work using electron spectroscopy to study the strong field ionization of molecules showed directly the population of the three lowest lying states of N.J the X, A, and B states, corresponding to the ionization of the 3ag, the 17ru, and the 2au orbitals [14]. More indirect work using VUV fluorescence identified the ionization of the significantly deeper 2ag orbital [42]. [Pg.16]

The interaction of an electron with an atom gives rise to two types of X-rays characteristic emission lines and bremsstrahlung. The atom emits element-characteristic X-rays when the incident electron ejects a bound electron from an atomic orbital. The core-ionized atom is highly unstable and has two possibilities for decay X-ray fluorescence and Auger decay. The first is the basis for electron microprobe analysis, and the second is the basis of Auger electron spectroscopy, discussed in Chapter 3. [Pg.189]

All analytical methods that use some part of the electromagnetic spectrum have evolved into many highly specialized ways of extracting information. The interaction of X-rays with matter represents an excellent example of this diversity. In addition to straightforward X-ray absorption, diffraction, and fluorescence, there is a whole host of other techniques that are either directly X-ray-related or come about as a secondary result of X-ray interaction with matter, such as X-ray photoemission spectroscopy (XPS), surface-extended X-ray absorption fine structure (SEXAFS) spectroscopy, Auger electron spectroscopy (AES), and time-resolved X-ray diffraction techniques, to name only a few [1,2]. [Pg.292]

Similarly, this amphiphilic polymer micelle was also used to dismpt the complex between cytochrome c (Cc) and cytochrome c peroxidase (CcP Sandanaraj, Bayraktar et al. 2007). In this case, we found that the polymer modulates the redox properties of the protein upon binding. The polymer binding exposes the heme cofactor of the protein, which is buried in the protein and alters the coordination environment of the metal. The exposure of heme was confirmed by UV-vis, CD spectroscopy, fluorescence spectroscopy, and electrochemical kinetic smdies. The rate constant of electron transfer (fc°) increased by 3 orders of magnimde for the protein-polymer complex compared to protein alone. To establish that the polymer micelle is capable of disrupting the Cc-CcP complex, the polymer micelle was added to the preformed Cc-CcP complex. The observed for this complex was the same as that of the Cc-polymer complex, which confirms that the polymer micelle is indeed capable of disrupting the Cc-CcP complex. [Pg.26]

The most frequently applied analytical methods used for characterizing bulk and layered systems (wafers and layers for microelectronics see the example in the schematic on the right-hand side) are summarized in Figure 9.4. Besides mass spectrometric techniques there are a multitude of alternative powerful analytical techniques for characterizing such multi-layered systems. The analytical methods used for determining trace and ultratrace elements in, for example, high purity materials for microelectronic applications include AAS (atomic absorption spectrometry), XRF (X-ray fluorescence analysis), ICP-OES (optical emission spectroscopy with inductively coupled plasma), NAA (neutron activation analysis) and others. For the characterization of layered systems or for the determination of surface contamination, XPS (X-ray photon electron spectroscopy), SEM-EDX (secondary electron microscopy combined with energy disperse X-ray analysis) and... [Pg.259]

GD-OES (glow discharge optical emission spectrometry) are applied. AES (auger electron spectroscopy), AFM (atomic force microscopy) and TRXF (transmission reflection X-ray fluorescence analysis) have been successfully used, especially in the semiconductor industry and in materials research. [Pg.260]

The minor and trace elements in coals are currently determined by several techniques, the most popular of which are optical emission and atomic absorption spectroscopy. Neutron activation analysis is also an excellent technique for determining many elements, but it requires a neutron source, usually an atomic reactor. In addition, x-ray fluorescence spectroscopy, electron spectroscopy for chemical analyses (ESCA), and spark source mass spectroscopy have been successfully applied to the analyses of some minor and trace elements in coal. [Pg.17]

Analytical techniques are conveniently discussed in terms of the excitation-system-response parlance described earlier. In most cases the system is some molecular entity in a specific chemical environment in some physical container (the cell). The cell is always an important consideration however, its role is normally quite passive (e.g., in absorption spectroscopy, fluorescence, nuclear magnetic resonance, electron spin resonance) because the phenomena of interest are homogeneous throughout the medium. Edge or surface effects are most often negligible. On the other hand, interactions between phases are the central issue in chromatography and electrochemistry. In such heterogeneous techniques, the physical characteristics of the sample container become of critical... [Pg.165]

For many simple surfactant systems, the methods of electron and fluorescence spectroscopy are not directly applicable, but in quite a few cases either the surfactant or a solubilized molecule displays useful light absorbing and/or fluorescing properties. However, it is more frequently so that measurements are made on a spectroscopic probe added in small amounts to the system of interest. [Pg.21]

Reading the electronic state of the switch is often performed by use of optical transient absorption and fluorescence emission spectroscopy. Fluorescence is a much more sensitive technique, and can be done even at the single molecule level. [Pg.4]

This volume covers a wide range of fundamental topics in coal maceral science that varies from the biological origin of macerals to their chemical reactivity. Several chapters report novel applications of instrumental techniques for maceral characterization. These new approaches include solid l3C NMR, electron spin resonance, IR spectroscopy, fluorescence microscopy, and mass spectrometry. A recently developed method for maceral separation is also presented many of the new instrumental approaches have been applied to macerals separated by this new method. The contributions in this volume present a sampling of the new directions being taken in the study of coal macerals to further our knowledge of coal petrology and coal chemistry. [Pg.7]

To date, a number of chemically selective near-field imaging methods have been demonstrated. Near-field contrast mechanisms that rely on electronic spectroscopy (UV-visible absorption and fluorescence),204 vibrational spectroscopy (IR absorption and Raman spectroscopies), dielectric spectroscopy (microwave dispersion), and nonlinear spectroscopy (second harmonic generation) have all been demonstrated at length scales well below the diffraction limit of light. [Pg.137]


See other pages where Electronic spectroscopy fluorescence is mentioned: [Pg.6563]    [Pg.6562]    [Pg.6563]    [Pg.6562]    [Pg.46]    [Pg.1385]    [Pg.1842]    [Pg.625]    [Pg.6]    [Pg.23]    [Pg.149]    [Pg.101]    [Pg.340]    [Pg.34]    [Pg.247]    [Pg.208]    [Pg.381]    [Pg.188]    [Pg.134]    [Pg.287]    [Pg.1]    [Pg.391]    [Pg.306]    [Pg.201]    [Pg.47]    [Pg.140]    [Pg.16]    [Pg.88]    [Pg.37]    [Pg.122]   
See also in sourсe #XX -- [ Pg.561 ]




SEARCH



Auger electron and X-ray fluorescence spectroscopy

Fluorescence Auger electron spectroscopy

Fluorescence spectroscopy

Fluorescent spectroscopy

© 2024 chempedia.info