Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic devices, membranes applications

One of the early hopes was that the technique could be used to create ultrathin insulating layers for field effect transistors and other electronic devices. This application is, however, bedeviled by the presence of very small defects (pinholes) in the films. These defects can be obviated by using a material whose transition temperature is well below room temperature (at which, it is assumed, fabrication takes place), such as the phospholipids found in nature as the main amphiphilic components of the ubiquitous bilayer lipid membrane that surrounds cells and their internal organelles, but these molecules are not very robust and would not have the longevity required in typical electronics applications. Another attempted application has been the creation of planar optical waveguides, but it turned out to... [Pg.537]

There are many thousands of outstanding applications where plastics are used in electrical designs. The designers imaginations have excelled in developing new plastic products. An example is the folded membrane and snap switches in controlling electronic devices. [Pg.389]

The field of modified electrodes spans a wide area of novel and promising research. The work dted in this article covers fundamental experimental aspects of electrochemistry such as the rate of electron transfer reactions and charge propagation within threedimensional arrays of redox centers and the distances over which electrons can be transferred in outer sphere redox reactions. Questions of polymer chemistry such as the study of permeability of membranes and the diffusion of ions and neutrals in solvent swollen polymers are accessible by new experimental techniques. There is hope of new solutions of macroscopic as well as microscopic electrochemical phenomena the selective and kinetically facile production of substances at square meters of modified electrodes and the detection of trace levels of substances in wastes or in biological material. Technical applications of electronic devices based on molecular chemistry, even those that mimic biological systems of impulse transmission appear feasible and the construction of organic polymer batteries and color displays is close to industrial use. [Pg.81]

Apart from hydrocarbons and gasoline, other possible fuels include hydrazine, ammonia, and methanol, to mention just a few. Fuel cells powered by direct conversion of liquid methanol have promise as a possible alternative to batteries for portable electronic devices (cf. below). These considerations already indicate that fuel cells are not stand-alone devices, but need many supporting accessories, which consume current produced by the cell and thus lower the overall electrical efficiencies. The schematic of the major components of a so-called fuel cell system is shown in Figure 22. Fuel cell systems require sophisticated control systems to provide accurate metering of the fuel and air and to exhaust the reaction products. Important operational factors include stoichiometry of the reactants, pressure balance across the separator membrane, and freedom from impurities that shorten life (i.e., poison the catalysts). Depending on the application, a power-conditioning unit may be added to convert the direct current from the fuel cell into alternating current. [Pg.24]

The principles, sampling systems, control of the measuring device and application of MS for bioprocesses have been summarized by Heinzle [157,158] and Heinzle and Reuss [162]. Samples are introduced into a vacuum (< 10 5 bar) via a capillary (heated, stainless steel or fused silica, 0.3 x 1000 mm or longer) or a direct membrane inlet, for example, silicon or Teflon [72,412]. Electron impact ionization with high energy (approx. 70 eV) causes (undesired) extensive fragmentation but is commonly applied. Mass separation can be obtained either by quadrupole or magnetic instruments and the detection should be performed by (fast and sensitive) secondary electron multipliers rather than (slower and less sensitive) Faraday cups (Fig. 21). [Pg.29]

Membranes fabricated using the MEMS technology are finding an increasing number of applications in sensors, actuators, and other sophisticated electronic device. However, the new area of application of MEMS is creating new materials demands that traditional silicon cannot fulfill [43]. Polymeric materials, also in this case, are the optimal solution for many applications. Microfabrication of polymeric films with specific transport properties, or micromembranes, already exists, and much work is in progress [44-50]. [Pg.1141]

Membrane characteristics, such as membrane potential and ion permeability, can be controlled by photoirradiation when photoisomerizable chromophores are incorporated into the membrane. The membrane can fabricate an organic-photosensor, which changes the potential in an on-off fashion when light irradiation is used as an input signal. Such an application of organic membranes is of considerable interest in connection with the development of molecular based electronic devices. [Pg.53]

All books, reviews, and entries on CPs describe the potential applications. Chandrasekhar and others ° have reviewed in comprehensive fashion the applications of CPs, including batteries sensors electro-optic and optical devices microwave- and conductivity-based technologies electrochromic devices electrochemomechanical and chemomechanical devices corrosion protection semiconductor, lithography, and electrically related applications— photovoltaics, heterojunction, and photoelectrochemical cells capacitors electrolytic and electroless metal plating CP-based molecular electronic devices catalysis and delivery of drugs and chemicals membranes and LEDs. [Pg.534]

There are some excellent review articles on different aspects of mesostructured materials, such as synthesis, properties, and applications. " Extensive research effort has been devoted to the exploitation of new phases (lamellar, cubic, hexagonal structures), expansion of the pore sizes (about 2-50 nm are accessible), and variable framework compositions (from pure silica, through mixed metal oxides to purely metal oxide-based frameworks, and inorganic-organic hybrid mesostructures). Another research focus is on the formation of mesostructured materials in other morphologies than powders, e.g. monolithic materials and films, which are required for a variety of applications including, but not limited to, sensors (based on piezoelectric mass balances or surface acoustic wave devices), catalyst supports, (size- and shape-selective) filtration membranes or (opto)electronic devices. The current article is focused... [Pg.451]

Applications in energy area include Li ion batteries, photovoltaic cells, membrane fuel cells, and dye-sensitized solar cells. Other applications are micropower to operate personal electronic devices via piezoelectric nanofibers woven into clothing, carrier materials for various catalysts, and photocatalytic air/water purification. ... [Pg.11]

Referring to microbial cellulose applications, bacterial nanocellulose has proven to be a remarkably versatile biomaterial with use in paper products, electronics, acoustic membranes, reinforcement of composite materials, membrane filters, hydraulic fracturing fluids, edible food packaging films, and due to its unique nanostructure and properties, in numerous medical and tissue-engineered applications (tissue-engineered constructs, wound healing devices, etc). [Pg.41]


See other pages where Electronic devices, membranes applications is mentioned: [Pg.295]    [Pg.6]    [Pg.547]    [Pg.629]    [Pg.181]    [Pg.182]    [Pg.2]    [Pg.234]    [Pg.340]    [Pg.170]    [Pg.166]    [Pg.491]    [Pg.152]    [Pg.299]    [Pg.378]    [Pg.133]    [Pg.3223]    [Pg.767]    [Pg.1663]    [Pg.155]    [Pg.505]    [Pg.462]    [Pg.236]    [Pg.915]    [Pg.198]    [Pg.209]    [Pg.383]    [Pg.99]    [Pg.2]    [Pg.418]    [Pg.181]    [Pg.382]    [Pg.491]    [Pg.716]    [Pg.31]    [Pg.187]    [Pg.763]    [Pg.266]    [Pg.12]   
See also in sourсe #XX -- [ Pg.1141 , Pg.1142 ]




SEARCH



Application device

Electron applications

Electron devices

Electron membrane

Electronic devices electronics

Electronics applications

Membrane applications membranes)

Membranes applications

© 2024 chempedia.info