Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical Reaction under Polarization

The amount by which an applied i) will decrease the cathodic energy barria- is PzFt, which gives a potential-dependent cathodic rate constant of [Pg.260]

This application of a negative overpotential will shift upward (perfectly vertically, it is assumed ) the zero-point energy level of the reactant PE surface [i.e., for reaction Eq. (9)], that of A -L , by zFr with respect to that of the product PE surface. This t 0, higher energy curve (dashed [Pg.260]


The current is recorded as a function of time. Since the potential also varies with time, the results are usually reported as the potential dependence of current, or plots of i vs. E (Fig.12.7), hence the name voltammetry. Curve 1 in Fig. 12.7 shows schematically the polarization curve recorded for an electrochemical reaction under steady-state conditions, and curve 2 shows the corresponding kinetic current 4 (the current in the absence of concentration changes). Unless the potential scan rate v is very low, there is no time for attainment of the steady state, and the reactant surface concentration will be higher than it would be in the steady state. For this reason the... [Pg.201]

Fig. 43. Double-logarithmic plot of the electrode polarization resistance versus the microelectrode diameter measured with impedance spectroscopy (ca. 800 °C) at (a) a cathodic dc bias of -300 mV, and (b) at an anodic dc bias of +300 mV. In (b) the first data point of the 20-pm microelectrode is not included in the fit. (c) Sketch illustrating the path of the oxygen reduction reaction for cathodic bias, (d) Path of the electrochemical reaction under anodic bias the rate-determining step occurs close to the three-phase boundary. Fig. 43. Double-logarithmic plot of the electrode polarization resistance versus the microelectrode diameter measured with impedance spectroscopy (ca. 800 °C) at (a) a cathodic dc bias of -300 mV, and (b) at an anodic dc bias of +300 mV. In (b) the first data point of the 20-pm microelectrode is not included in the fit. (c) Sketch illustrating the path of the oxygen reduction reaction for cathodic bias, (d) Path of the electrochemical reaction under anodic bias the rate-determining step occurs close to the three-phase boundary.
After polarization to more anodic potentials than E the subsequent polymeric oxidation is not yet controlled by the conformational relaxa-tion-nucleation, and a uniform and flat oxidation front, under diffusion control, advances from the polymer/solution interface to the polymer/metal interface by polarization at potentials more anodic than o-A polarization to any more cathodic potential than Es promotes a closing and compaction of the polymeric structure in such a magnitude that extra energy is now required to open the structure (AHe is the energy needed to relax 1 mol of segments), before the oxidation can be completed by penetration of counter-ions from the solution the electrochemical reaction starts under conformational relaxation control. So AHC is the energy required to compact 1 mol of the polymeric structure by cathodic polarization. Taking... [Pg.379]

In the past decade, effects of an EEF on the properties of lubrication and wear have attracted significant attention. Many experimental results indicate that the friction coefficient changes with the intensity of the EEF on tribo-pairs. These phenomena are thought to be that the EEF can enhance the electrochemical reaction between lubricants and the surfaces of tribo-pairs, change the tropism of polar lubricant molecules, or help the formation of ordered lubricant molecular layers [51,73-77]. An instrument for measuring lubricant film thickness with a technique of the relative optical interference intensity (ROII) has been developed by Luo et al. [4,48,51,78] to capture such real-time interference fringes and to study the phenomenon when an EEF is applied, which is helpful to the understanding of the mechanism of thin film lubrication under the action of the EEF. [Pg.55]

Transient measnrements (relaxation measurements) are made before transitory processes have ended, hence the current in the system consists of faradaic and non-faradaic components. Such measurements are made to determine the kinetic parameters of fast electrochemical reactions (by measuring the kinetic currents under conditions when the contribution of concentration polarization still is small) and also to determine the properties of electrode surfaces, in particular the EDL capacitance (by measuring the nonfaradaic current). In 1940, A. N. Frumkin, B. V. Ershler, and P. I. Dolin were the first to use a relaxation method for the study of fast kinetics when they used impedance measurements to study the kinetics of the hydrogen discharge on a platinum electrode. [Pg.199]

Abstract The flotation mechanism is discussed in the terms of corrosive electrochemistry in this chapter. In corrosion the disolution of minerals is called self-corrosion. And the reaction between reagents and minerals is treated as inhibition of corrosion. The stronger the ability of inhibiting the corrosion of minerals, the stronger the reagents react with minerals. The two major tools implied in the research of electrochemical corrosion are polarization curves and EIS (electrochemistry impedance spectrum). With these tools, pyrite, galena and sphalerite are discussed under different conditions respectively, including interactions between collector with them and the difference of oxidation of minerals in NaOH solution and in lime. And the results obtained from this research are in accordance with those from other conventional research. With this research some new information can be obtained while it is impossible for other methods. [Pg.167]

A bare surface of silicon can only exist in fluoride containing solutions. In reality, in these media, the electrode is considered to be passive due to the coverage by Si— terminal bonds. Nevertheless, the interface Si/HF electrolyte constitutes a basic example for the study of electrochemical processes at the Si electrode. In this system, the silicon must be considered both as a charge carrier reservoir in cathodic reactions, and as an electrochemical reactant under anodic polarization. Moreover, one must keep in mind that, according to the standard potential of the element, both anodic and cathodic charge transfers are involved simultaneously (corrosion process) in a wide range of potentials. [Pg.314]

Under working conditions, with a current density j, the cell voltage E(J) decreases greatly as the result of three limiting factors the overvoltages r a and r c at both electrodes due to a rather low reaction rate of the electrochemical processes (activation polarization), the ohmic drop RJ in the electrolyte and interface resistance Re, and mass transfer limitations for reactants and products (concentration polarization). [Pg.393]

Metallic corrosion occurs because of the coupling of two different electrochemical reactions on the material surface. If, as assumed in the discussion of iron dissolution kinetics above, only iron oxidation and reduction were possible, the conservation of charge would require that in the absence of external polarization, the iron be in thermodynamic equilibrium. Under those conditions, no net dissolution would occur. In real systems, that assumption is invalid, and metallic dissolution occurs with regularity, keeping corrosionists employed and off the street. [Pg.41]

Polarization has various meanings and interpretations depending on the system under study. For an electrochemical reaction, this is the difference between actual electrode potential and reaction equilibrium potential. Anodic polarization is the shift of anode potential to the positive direction, and cathodic polarization is the shift of cathode potential to the negative direction. In an electrochemical production system driven with an external current source, polarization is a harmful phenomenon. It will increase the cell voltage and therefore production costs. A system that polarizes easily will not pass high currents even at high overpotentials. The reaction rates are therefore small. [Pg.166]

In addition, the cathodic PCT technique offers an exceptionally powerful tool for understanding the kinetics of the cathode reaction, in the case where electrochemical reactions are self-enhanced over long periods of time ( 4 h) under the cathodic polarization. In contrast to the cathodic potentiodynamic polarization curves with a short measuring time ( 10 min), the cathodic PCTs allow observation of variations in the steady-state current with polarization time, which may provide valuable information when analyzing the reaction rate under cathodic polarization [120]. [Pg.173]

Properties of engineering materials are known to vary under the action of electromagnetic fields. For instance, wear of metal-polymer friction joints was found to reduce substantially in response to exposure to a flow of charged particles in conditions of electrochemical reactions. Besides, methods of regulating the conductivity of materials and polarization of crystals by electrical fields, as well as by so-called training methods of semi-conducting substances and many others are known in the art. [Pg.288]

Luminous radiation (light) can produce changes in the open-circuit potentials and in the polarization characteristics of electrodes at constant potential the current may change (anodic or cathodic photocurrents appear), while at constant current, the electrode potential may change (photopotentials appear). It is an important special feature that electrochemical reactions may become possible that at the same potentials in the dark are thermodynamically prohibited, that is, associated with an increase in Gibbs energy under illumination, such reactions are possible because of the energy supplied from outside. [Pg.355]

Under these conditions, the microscopic polarization curve shows a linear dependence of I on r], the reciprocal of the slope corresponding to an electrochemical reaction resistance, called the Faradaic resistance, having the dimensions of ohm square centimeter. [Pg.98]


See other pages where Electrochemical Reaction under Polarization is mentioned: [Pg.259]    [Pg.259]    [Pg.703]    [Pg.1684]    [Pg.87]    [Pg.124]    [Pg.211]    [Pg.557]    [Pg.241]    [Pg.706]    [Pg.165]    [Pg.1323]    [Pg.391]    [Pg.28]    [Pg.294]    [Pg.318]    [Pg.466]    [Pg.641]    [Pg.300]    [Pg.324]    [Pg.9]    [Pg.247]    [Pg.297]    [Pg.325]    [Pg.780]    [Pg.199]    [Pg.218]    [Pg.172]    [Pg.218]    [Pg.199]    [Pg.280]    [Pg.80]    [Pg.333]   


SEARCH



Electrochemical reactions

Polarization electrochemical

Reaction polarity

© 2024 chempedia.info