Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lubricant polar

If a paraffin wax is added to a nonpolar polymer matrix, such as polyethylene, it is soluble and acts as an internal lubricant. Polar lubricants, such as esters, in a nonpolar polymer matrix, polyethylene, are not miscible [158]. Polar lubricants are usually miscible with polar polymer matrices. As the aliphatic chain length increases, the miscibility decreases in polar matrices and increases in nonpolar matrices. [Pg.58]

The introduction of monomers containing polar groups such as tertiary amines, imidazoles, pyrrolidones, pyridines, etc., gives the polymer dispersant properties that will be discussed in the article on dispersant additives for lubricants. [Pg.357]

In the case of lubricant detergents, the hydrophilic or polar part is a metallic salt (calcium, magnesium) and at the center of the micelle it is possible to store a reserve of a metal base (lime or magnesia) the detergent will be able therefore to neutralize the acids produced by oxidation of the oil as soon as they are created. [Pg.360]

In the case of lubricant dispersants, the polar part is organic (amine, polyamine, heterocyclic nitrogen compounds, polyglycol). [Pg.360]

Film stability is a primary concern for applications. LB films of photopoly-merizable polymeric amphiphiles can be made to crosslink under UV radiation to greatly enhance their thermal stability while retaining the ordered layered structure [178]. Low-molecular-weight perfluoropolyethers are important industrial lubricants for computer disk heads. These small polymers attached to a polar head form continuous films of uniform thickness on LB deposi-... [Pg.560]

A number of chemical products are derived from Sasol s synthetic fuel operations based on the Fischer-Tropsch synthesis including paraffin waxes from the Arge process and several polar and nonpolar hydrocarbon mixtures from the Synthol process. Products suitable for use as hot melt adhesives, PVC lubricants, cormgated cardboard coating emulsions, and poHshes have been developed from Arge waxes. Wax blends containing medium and hard wax fractions are useful for making candles, and over 20,000 t/yr of wax are sold for this appHcation. [Pg.168]

Rust inhibitors usually are corrosion inhibitors that have a high polar attraction toward metal surfaces and that form a tenacious, continuous film which prevents water from reaching the metal surface. Typical mst inhibitors are amine succinates and alkaline-earth sulfonates. Rust inhibitors can be used in most types of lubricating oils, but factors of selection include possible corrosion of nonferrous metals or formation of emulsions with water. Because mst inhibitors are adsorbed on metal surfaces, an oil can be depleted of its mst inhibitor. In certain cases, it is possible to correct the depletion by adding more inhibitor. [Pg.266]

As is indicated in Figure 4, saturates contribute less to the vacuum gas oil (VGO) than the aromatics, but more than the polars present at percentage, rather than trace, levels. VGO itself is occasionally used as a heating oil but most commonly it is processed by catalytic cracking to produce naphtha or by extraction to yield lubricant oils. [Pg.170]

This discussion refers to external plasticization only. Several theories, varyiag ia detail and complexity, have been proposed ia order to explain plasticizer action. Some theories iavolve detailed analysis of polarity, solubiHty, and iateraction parameters and the thermodynamics of polymer behavior, whereas others treat plasticization as a simple lubrication of chains of polymer from each other, analogous to the lubrication of metal parts by oil. Although each theory is not exhaustive, an understanding of the plasticization process can be gained by combining ideas from each theory, and an overall theory of plasticization must include all these aspects. [Pg.123]

Polybutenes enjoy extensive use as adhesives, caulks, sealants, and glaring compounds. They are used as plasticizers in mbber formulations with butyl mbber, SBR, and natural mbber. In linear low density polyethylene (LLDPE) blends they induce cling to stretch-wrap films. Polybutenes when modified at their unsaturated end groups with polar fiinctionahty are widely employed in lubricants as dispersants. Blends of polybutene with polyolefins produce semisoHd gels that can be used as potting and electrical cable filling materials. [Pg.487]

An example of a practical dielec trofilter which uses both of the features described, namely, sharp electrodes and dielectric field-warping filler materials, is that described in Fig. 22-34 [H. I. Hall and R. F. Brown, Lubric. Eng., 22, 488 (1966)]) It is intended for use with hydrauhc fluids, fuel oils, lubricating oils, transformer oils, lubricants, and various refineiy streams. Performance data are cited in Fig. 22-35. It must be remarked that in the opinion of Hall and Brown the action of the dielec trofilter was electrostatic and due to free charge on the particles dispersed in the hquids. It is the present authors opinion, however, that both elec trophoresis and dielectrophoresis are operative here but that the dominant mechanism is that of DEP, in wdiich neutral particles are polarized and attracted to the regions of highest field intensity. [Pg.2013]

Both the dipolymers and terpolymers have excellent resistance to hydrocarbons found m petroleum-based fuels and lubricants The 69 5% F terpolymer resists swellmg m blended fuels that contain metlianol and can be used in contact with certain phosphate ester-based hydraulic fluids Terpolymers are preferred for contact with aromatic solvents, although either type performs well in higher alcohols VDF-based elastomers dissolve m polar aprotic solvents such as ketones, esters, amides, and certam ethers These elastomers are therefore not suitable for contact with fluids that contain substantial amounts of these solvents because of excessive swell and consequent loss of mechanical properties... [Pg.1113]

The increasing demands being made on equipment by the requirement for increased output from smaller units create problems of lubrication, even in systems where full-fluid film conditions generally exist. For instance, at start-up, after a period of rest, boundary lubrication conditions can exist and the mechanical wear that takes place could lead to equipment failure. Anti-wear additives, by their polar... [Pg.847]

The performance of soluble oils is made possible not only by their high specific heat and thermal conductivity but by their low viscosity, which permits good penetration into the very fine clearances around the cutting zone. Consequently, these fluids are used mainly where cooling is the primary requirement. Lubricating properties can be improved by polar additives, which are agents that enhance the oiliness or anti-friction characteristics. Further improvements can be effected by EP (extreme-pressure) additives, which are usually compounds of sulfur or chlorine. [Pg.870]

The electric voltage also has an influence on the film thickness in TFL. Shen et al. [50] used hexadecane with the addition of cholesteryl LCs in chemically pure as the lubricant to check the variation of its film thickness by applying an external DC voltage. With the technique of ROII [3,4,51], the effects of LCs polarity and concentration on film thickness and the effects of lubricant molecules on a film-forming mechanism were investigated by them. [Pg.45]

In order to set up the relationship among the pressure, speed, and viscosity of lubricants without polar additives, Luo et al. [19] define the fluid factor L as ... [Pg.54]

The unit of Pf here is MPa is the kinetic viscosity of lubricant in mm /s u is the velocity in mm/s, for the oil without polar additives, k is 23.5 X 10". If the tribo-pairs need to be lubricated with the fluid film in the TFL and EHL regime, the lubricant and the rolling speed should be chosen according to the pressure applied as Eq (9) so as to make that the liquid factor L is larger than the failure fluid factor L. Otherwise, the liquid film caimot be maintained under the pressure added. [Pg.54]

In the past decade, effects of an EEF on the properties of lubrication and wear have attracted significant attention. Many experimental results indicate that the friction coefficient changes with the intensity of the EEF on tribo-pairs. These phenomena are thought to be that the EEF can enhance the electrochemical reaction between lubricants and the surfaces of tribo-pairs, change the tropism of polar lubricant molecules, or help the formation of ordered lubricant molecular layers [51,73-77]. An instrument for measuring lubricant film thickness with a technique of the relative optical interference intensity (ROII) has been developed by Luo et al. [4,48,51,78] to capture such real-time interference fringes and to study the phenomenon when an EEF is applied, which is helpful to the understanding of the mechanism of thin film lubrication under the action of the EEF. [Pg.55]

When the length scale approaches molecular dimensions, the inner spinning" of molecules will contribute to the lubrication performance. It should be borne in mind that it is not considered in the conventional theory of lubrication. The continuum fluid theories with microstructure were studied in the early 1960s by Stokes [22]. Two concepts were introduced couple stress and microstructure. The notion of couple stress stems from the assumption that the mechanical interaction between two parts of one body is composed of a force distribution and a moment distribution. And the microstructure is a kinematic one. The velocity field is no longer sufficient to determine the kinematic parameters the spin tensor and vorticity will appear. One simplified model of polar fluids is the micropolar theory, which assumes that the fluid particles are rigid and randomly ordered in viscous media. Thus, the viscous action, the effect of couple stress, and... [Pg.67]

Figure 9 shows the minimum lubricant him thickness as a function of velocity, with or without micro-polarity. The him thickness curves with micro-polarity are larger than those with the nonpolar molecules. This means that the microstructure and microrotation will have an influence on the him thickness. The simple exponential relation between him thickness and velocity, which holds in EHL, is no longer valid for thin him lubrication if the microstructure and the microrotation are taken into account. However, if the minimum him thickness is sufficiently large, as the velocity increases, the discrepancy between results with and without the consideration of the polar effect is very small. With an increase in both the characteristic length Z and coupling number N, the minimum him thickness becomes much larger than that of the nonpolar case. This reveals a size-dependent effect which accords well with experimental re-... [Pg.69]


See other pages where Lubricant polar is mentioned: [Pg.83]    [Pg.122]    [Pg.332]    [Pg.83]    [Pg.122]    [Pg.332]    [Pg.248]    [Pg.346]    [Pg.191]    [Pg.136]    [Pg.350]    [Pg.241]    [Pg.186]    [Pg.101]    [Pg.503]    [Pg.417]    [Pg.499]    [Pg.133]    [Pg.365]    [Pg.141]    [Pg.331]    [Pg.454]    [Pg.887]    [Pg.1]    [Pg.2]    [Pg.2]    [Pg.38]    [Pg.38]    [Pg.38]    [Pg.42]    [Pg.54]    [Pg.55]    [Pg.59]    [Pg.60]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



© 2024 chempedia.info