Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical photocurrent

Electrochemical Photocurrent Measurements (Optical/Electrical Method Class), Introduction of a New Model... [Pg.10]

In studies of electrochemical photocurrents obtained at molecular semiconductor thin films (PcZn, (CN)sPcZn, TPyTAPZn, MePTCDI) and their dependence on the concentration of the reactant in the electrolyte (O2, ethylthiolate (RS ), hydroquinone/benzoquinone (HQ/BQ), Fe(CN)g, a sat-... [Pg.481]

The combination of electrochemistry and photochemistry is a fonn of dual-activation process. Evidence for a photochemical effect in addition to an electrochemical one is nonnally seen m the fonn of photocurrent, which is extra current that flows in the presence of light [, 89 and 90]. In photoelectrochemistry, light is absorbed into the electrode (typically a semiconductor) and this can induce changes in the electrode s conduction properties, thus altering its electrochemical activity. Alternatively, the light is absorbed in solution by electroactive molecules or their reduced/oxidized products inducing photochemical reactions or modifications of the electrode reaction. In the latter case electrochemical cells (RDE or chaimel-flow cells) are constmcted to allow irradiation of the electrode area with UV/VIS light to excite species involved in electrochemical processes and thus promote fiirther reactions. [Pg.1945]

Membranes and Osmosis. Membranes based on PEI can be used for the dehydration of organic solvents such as 2-propanol, methyl ethyl ketone, and toluene (451), and for concentrating seawater (452—454). On exposure to ultrasound waves, aqueous PEI salt solutions and brominated poly(2,6-dimethylphenylene oxide) form stable emulsions from which it is possible to cast membranes in which submicrometer capsules of the salt solution ate embedded (455). The rate of release of the salt solution can be altered by surface—active substances. In membranes, PEI can act as a proton source in the generation of a photocurrent (456). The formation of a PEI coating on ion-exchange membranes modifies the transport properties and results in permanent selectivity of the membrane (457). The electrochemical testing of salts (458) is another possible appHcation of PEI. [Pg.14]

Stationary microwave electrochemical measurements can be performed like stationary photoelectrochemical measurements simultaneously with the dynamic plot of photocurrents as a function of the voltage. The reflected photoinduced microwave power is recorded. A simultaneous plot of both photocurrents and microwave conductivity makes sense because the technique allows, as we will see, the determination of interfacial rate constants, flatband potential measurements, and the determination of a variety of interfacial and solid-state parameters. The accuracy increases when the photocurrent and the microwave conductivity are simultaneously determined for the same system. As in ordinary photoelectrochemistry, many parameters (light intensity, concentration of redox systems, temperature, the rotation speed of an electrode, or the pretreatment of an electrode) may be changed to obtain additional information. [Pg.447]

Since photoelectrochemistry is not limited to photocurrent measurements, it may at this point be useful to think about some general new research possibilities to be expected from the combination of electrochemical and microwave measurements. Table 1 shows obvious combination possibilities between electrochemical and microwave measurements. [Pg.460]

The combination of photocurrent measurements with photoinduced microwave conductivity measurements yields, as we have seen [Eqs. (11), (12), and (13)], the interfacial rate constants for minority carrier reactions (kn sr) as well as the surface concentration of photoinduced minority carriers (Aps) (and a series of solid-state parameters of the electrode material). Since light intensity modulation spectroscopy measurements give information on kinetic constants of electrode processes, a combination of this technique with light intensity-modulated microwave measurements should lead to information on kinetic mechanisms, especially very fast ones, which would not be accessible with conventional electrochemical techniques owing to RC restraints. Also, more specific kinetic information may become accessible for example, a distinction between different recombination processes. Potential-modulation MC techniques may, in parallel with potential-modulation electrochemical impedance measurements, provide more detailed information relevant for the interpretation and measurement of interfacial capacitance (see later discus-... [Pg.460]

As mentioned in the introduction, before an adequate theory was developed, it was difficult to understand the experimentally determined pho-toinduced PMC signals, especially the minority carrier accumulation near the onset of photocurrents.The reason was that neither conventional solid-state semiconductor theory nor photoelectrochemical theory had taken such a phenomenon into account. But we have shown that it is real and microwave (photo)electrochemical experiments clearly confirm it. [Pg.469]

Recently, a eutectic mixture of choline chloride and urea (commercially known as Reline) was used as a medium from which CdS, as well as CdSe and ZnS, thin films were electrodeposited for the first time [53]. Reline is a conductive room-temperature ionic liquid (RTIL) with a wide electrochemical window. The voltammetric behavior of the Reline-Cd(II)-sulfur system was investigated, while CdS thin films were deposited at constant potential and characterized by photocurrent and electrolyte electroabsorbance spectroscopies. [Pg.93]

Peter LM, Reid ID, Scharifker BR (1981) Electrochemical adsorption and phase formation on mercury in sulphide ion solutions. 1 Electroanal Chem 119 73-91 Da Silva Pereira MI, Peter LM (1982) Photocurrent spectroscopy of semiconducting anodic films on mercury. J Electroanal Chem 131 167-179... [Pg.141]

In a subsequent work [182], it was shown that the photoelectrochemical performance of InSe can be considerably improved by means of selective (photo)electrochemical etching. Interestingly, whereas the cleavage vdW plane showed little improvement, the photocurrent in the face parallel to the c-axis was doubled. Note that, in contrast to InSe crystals cleaved in the plane perpendicular to the c-axis that are almost defect free, the crystals cut in the plane parallel to the c-axis contain a high density of defects on their surface which leads to a high rate of electron-hole recombinations and inferior quantum efficiency. The asymmetry in the role of electrons and holes, as manifested, e.g., in the fact that surface holes carry out the selective corrosion of the semiconductor surface in both cleavage orientations, was discussed. [Pg.257]

The (photo)electrochemical behavior of p-InSe single-crystal vdW surface was studied in 0.5 M H2SO4 and 1.0 M NaOH solutions, in relation to the effect of surface steps on the crystal [183]. The pH-potential diagram was constructed, in order to examine the thermodynamic stability of the InSe crystals (Fig. 5.12). The mechanism of photoelectrochemical hydrogen evolution in 0.5 M H2SO4 and the effect of Pt modification were discussed. A several hundred mV anodic shift of the photocurrent onset potential was observed by depositing Pt on the semiconductor electrode. [Pg.257]

Polycrystalline thin Aims of gallium-containing CdSe, i.e., (CdGa)Se of variable composition, have been synthesized by electrochemical co-deposition and characterized by photovoltammetry, photocurrent spectroscopy, and electrochemical... [Pg.257]

McCann JE, Pezy J (1981) The measurement of the Hatband potentials of n-type and p-type semiconductors by rectified alternating photocurrent voltammetry. J Electrochem Soc 128 1735-1740... [Pg.300]

Because of the excess holes with an energy lower than the Fermi level that are present at the n-type semiconductor surface in contact with the solution, electron ttansitions from the solution to the semiconductor electrode are facilitated ( egress of holes from the electrode to the reacting species ), and anodic photocurrents arise. Such currents do not arise merely from an acceleration of reactions which, at the particular potential, will also occur in the dark. According to Eq. (29.6), the electrochemical potential, corresponds to a more positive value of electrode potential (E ) than that which actually exists (E). Hence, anodic reactions can occur at the electrode even with redox systems having an equilibrium potential more positive than E (between E and E ) (i.e., reactions that are prohibited in the dark). [Pg.567]

Table 1. Photovoltage Up, photocurrent ip fill factor FF and efficiency p of regenerative electrochemical solar cells... [Pg.89]

Halmann reported in 1978 the first example of the reduction of carbon dioxide at a p-GaP electrode in an aqueous solution (0.05 M phosphate buffer, pH 6.8).95 At -1.0 V versus SCE, the initial photocurrent under C02 was 6 mA/ cm2, decreasing to 1 mA/cm2 after 24 h, while the dark current was 0.1 mA/cm2. In contrast to the electrochemical reduction of C02 on metal electrodes, formic acid, which is a main product at metal electrodes, was further reduced to formaldehyde and methanol at an illuminated p-GaP. Analysis of the solution after photoassisted electrolysis for 18 and 90 h showed that the products were 1.2 x 10-2 and 5 x 10 2 M formic acid, 3.2 x 10 4 and 2.8 x 10-4 M formaldehyde, and 1.1 x 10-4 and 8.1xlO 4M methanol, respectively. The maximum optical conversion efficiency calculated from Eq. (23) for production of formaldehyde and methanol (assuming 100% current efficiency) was 5.6 and 3.6%, respectively, where the bias voltage against a carbon anode was -0.8 to -0.9 V and 365-nm monochromatic light was used. In a later publication,4 these values were given as ca. 1% or less, where actual current efficiencies were taken into account [Eq. (24)]. [Pg.349]

Fig. 3.2 The inset (center left) shows the electrochemical double-cell set-up with the two applied potentials VEB and VBc, which constitute a circuit similar to a solid-state bipolar transistor. The emitter-base current /EB (full line) of a moderately doped p-type electrode illuminated corresponding to a photocurrent of 10 mA cm-2 is shown in the upper part of the figure. Below /EB is shown for an n-type electrode illuminated with an intensity corresponding to 90 mA cmf2. The base-... Fig. 3.2 The inset (center left) shows the electrochemical double-cell set-up with the two applied potentials VEB and VBc, which constitute a circuit similar to a solid-state bipolar transistor. The emitter-base current /EB (full line) of a moderately doped p-type electrode illuminated corresponding to a photocurrent of 10 mA cm-2 is shown in the upper part of the figure. Below /EB is shown for an n-type electrode illuminated with an intensity corresponding to 90 mA cmf2. The base-...

See other pages where Electrochemical photocurrent is mentioned: [Pg.241]    [Pg.243]    [Pg.277]    [Pg.241]    [Pg.243]    [Pg.277]    [Pg.110]    [Pg.34]    [Pg.447]    [Pg.478]    [Pg.185]    [Pg.161]    [Pg.209]    [Pg.212]    [Pg.213]    [Pg.230]    [Pg.247]    [Pg.250]    [Pg.266]    [Pg.272]    [Pg.284]    [Pg.557]    [Pg.267]    [Pg.267]    [Pg.145]    [Pg.232]    [Pg.472]    [Pg.232]    [Pg.239]    [Pg.447]    [Pg.75]    [Pg.188]    [Pg.203]   


SEARCH



Electrochemical photocurrent measurements

Photocurrent

Photocurrents

© 2024 chempedia.info