Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical conductivity point defects

The direct method includes direct observation by electron microscope and field emission technique structural analysis using X-ray, neutron and electron diffractometry, or channelling technique and also resonance techniques such as ESR, NMR, and Mossbauer absorption. The techniques used in the indirect method include the measurement of a property sensitive to the nonstoichiometric composition, such as lattice constant, density, equilibrium partial pressure, and electric conductivity. The defect structure is estimated from the correspondence between the defect model assumed and the measured change of the property. With the indirect method, it is rather difficult to estimate defect structures more complex than the simple point defect. [Pg.115]

Dislocation theory as a portion of the subject of solid-state physics is somewhat beyond the scope of this book, but it is desirable to examine the subject briefly in terms of its implications in surface chemistry. Perhaps the most elementary type of defect is that of an extra or interstitial atom—Frenkel defect [110]—or a missing atom or vacancy—Schottky defect [111]. Such point defects play an important role in the treatment of diffusion and electrical conductivities in solids and the solubility of a salt in the host lattice of another or different valence type [112]. Point defects have a thermodynamic basis for their existence in terms of the energy and entropy of their formation, the situation is similar to the formation of isolated holes and erratic atoms on a surface. Dislocations, on the other hand, may be viewed as an organized concentration of point defects they are lattice defects and play an important role in the mechanism of the plastic deformation of solids. Lattice defects or dislocations are not thermodynamic in the sense of the point defects their formation is intimately connected with the mechanism of nucleation and crystal growth (see Section IX-4), and they constitute an important source of surface imperfection. [Pg.275]

One feature of oxides is drat, like all substances, they contain point defects which are most usually found on the cation lattice as interstitial ions, vacancies or ions with a higher charge than dre bulk of the cations, refened to as positive holes because their effect of oxygen partial pressure on dre electrical conductivity is dre opposite of that on free electron conductivity. The interstitial ions are usually considered to have a lower valency than the normal lattice ions, e.g. Zn+ interstitial ions in the zinc oxide ZnO structure. [Pg.140]

Point defects in solids make it possible for ions to move through the structure. Ionic conductivity represents ion transport under the influence of an external electric field. The movement of ions through a lattice can be explained by two possible mechanisms. Figure 25.3 shows their schematic representation. The first, called the vacancy mechanism, represents an ion that hops or jumps from its normal position on the lattice to a neighboring equivalent but vacant site or the movement of a vacancy in the opposite direction. The second one is an interstitial mechanism where an interstitial ion jumps or hops to an adjacent equivalent site. These simple pictures of movement in an ionic lattice, known as the hopping model, ignore more complicated cooperative motions. [Pg.426]

In a perfect crystal, all atoms would be on their correct lattice positions in the structure. This situation can only exist at the absolute zero of temperature, 0 K. Above 0 K, defects occur in the structure. These defects may be extended defects such as dislocations. The strength of a material depends very much on the presence (or absence) of extended defects, such as dislocations and grain boundaries, but the discussion of this type of phenomenon lies very much in the realm of materials science and will not be discussed in this book. Defects can also occur at isolated atomic positions these are known as point defects, and can be due to the presence of a foreign atom at a particular site or to a vacancy where normally one would expect an atom. Point defects can have significant effects on the chemical and physical properties of the solid. The beautiful colours of many gemstones are due to impurity atoms in the crystal structure. Ionic solids are able to conduct electricity by a mechanism which is due to the movement of fo/ 5 through vacant ion sites within the lattice. (This is in contrast to the electronic conductivity that we explored in the previous chapter, which depends on the movement of electrons.)... [Pg.201]

One of the most important aspects of point defects is that they make it possible for atoms or ions to move through the structure. If a crystal structure were perfect, it would be difficult to envisage how the movement of atoms, either diffusion through the lattice or ionic conductivity (ion transport under the influence of an external electric field) could take place. Setting up equations to describe either diffusion or conductivity in solids is a very similar process, and so we have chosen to concentrate here on conductivity, because many of the examples later in the chapter are of solid electrolytes. [Pg.209]

A variety of techniques has been employed to investigate aliovalent impurity-cation vacancy pairs and other point defects in ionic solids. Dielectric relaxation, optical absorption and emission spectroscopy, and ionic thermocurrent measurements have been most valuable ESR studies of Mn " in NaCl have shown the presence of impurity-vacancy pairs of at least five different symmetries. The techniques that have provided a wealth of information on the energies of migration, formation and other defect energies in ionic solids are diffusion and electrical conductivity measurements. Electrical conductivity in ionic solids occurs by the motion of ions through vacancies or of interstitial ions. In the case of motion through vacancies, the conductivity, a, is given by... [Pg.232]

The motion of ions through solids results in both charge as well as mass transport. Whereas charge transport manifests itself as ionic conductivity in the presence of an applied electric field, macroscopic mass transport (diffusion) occurs in a concentration gradient. Both ionic conductivity and diffusion arise from the presence of point defects in solids (Section 5.2). For a solid showing exclusive ionic conduction, conductivity is written as... [Pg.305]

Diffusion in ionically bonded solids is more complicated than in metals because site defects are generally electrically charged. Electric neutrality requires that point defects form as neutral complexes of charged site defects. Therefore, diffusion always involves more than one charged species.9 The point-defect population depends sensitively on stoichiometry for example, the high-temperature oxide semiconductors have diffusivities and conductivities that are strongly regulated by the stoichiometry. The introduction of extrinsic aliovalent solute atoms can be used to fix the low-temperature population of point defects. [Pg.177]

Extrinsic Crystal Self-Diffusion. Charged point defects can be induced to form in an ionic solid by the addition of substitutional cations or anions with charges that differ from those in the host crystal. Electrical neutrality demands that each addition results in the formation of defects of opposite charge that can contribute to the diffusivity or electronic conductivity. The addition of aliovalent solute (impurity) atoms to an initially pure ionic solid therefore creates extrinsic defects.10... [Pg.179]

Crystal Self-Diffusion in Nonstoichiometric Materials. Nonstoichiometry of semiconductor oxides can be induced by the material s environment. For example, materials such as FeO (illustrated in Fig. 8.14), NiO, and CoO can be made metal-deficient (or O-rich) in oxidizing environments and Ti02 and Zr02 can be made O-deficient under reducing conditions. These induced stoichiometric variations cause large changes in point-defect concentrations and therefore affect diffusivities and electrical conductivities. [Pg.181]

Experiments demonstrate that along crystal imperfections such as dislocations, internal interfaces, and free surfaces, diffusion rates can be orders of magnitude faster than in crystals containing only point defects. These line and planar defects provide short-circuit diffusion paths, analogous to high-conductivity paths in electrical systems. Short-circuit diffusion paths can provide the dominant contribution to diffusion in a crystalline material under conditions described in this chapter. [Pg.209]

The main effect due to interaction of fast electrons with the material is determined by the ionization of molecules and the formation of point defects. An increase in the electrical conductivity can be associated with multistage collision... [Pg.822]

With structural quality in most of the non-equilibrium growth processes compromised, microstructure and point defects largely dominate the electrical characteristics of most films described in the literature, where InN is typically reported as highly conductive n-type and polycrystalline. [Pg.129]

In addition to mechanical properties, other physical properties of polycrystaUine materials, such as electrical and thermal conduction, are also affected by microstmcture. Although polycrystals are mechanicaUy superior to single crystals, they have inferior transport properties. Point defects (vacancies, impurities) and extended defects (grain boundaries) scatter electrons and phonons, shortening their mean free paths. Owing to... [Pg.84]


See other pages where Electrical conductivity point defects is mentioned: [Pg.256]    [Pg.28]    [Pg.251]    [Pg.86]    [Pg.132]    [Pg.143]    [Pg.148]    [Pg.73]    [Pg.64]    [Pg.544]    [Pg.229]    [Pg.306]    [Pg.307]    [Pg.410]    [Pg.211]    [Pg.99]    [Pg.215]    [Pg.34]    [Pg.57]    [Pg.112]    [Pg.223]    [Pg.318]    [Pg.320]    [Pg.365]    [Pg.1]    [Pg.36]    [Pg.6]    [Pg.261]    [Pg.14]    [Pg.569]    [Pg.281]    [Pg.9]    [Pg.156]    [Pg.14]   


SEARCH



Conduction defects

Defect point

© 2024 chempedia.info