Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elastomers controlling

The reaction sequences used in this preparation followed the conventional polyurethane prepolymer sequence with the following provision that steps were made to obtain in the final PU elastomer controlled quantities of covalent-type crosslinks by leaving calculated excesses of isocyanate groups in the initially cast and cured PU. [Pg.92]

Figure 13.13 Composite TVA thermogram of the degradation of a POSS-silicone hybrid and an unfilled silicone elastomer control sample. A-B correspond to the total level of volatiles released from each system as a function system pressure, while C-D correspond to the transient pressure increase associated with the evolution of permanent gasses. Figure 13.13 Composite TVA thermogram of the degradation of a POSS-silicone hybrid and an unfilled silicone elastomer control sample. A-B correspond to the total level of volatiles released from each system as a function system pressure, while C-D correspond to the transient pressure increase associated with the evolution of permanent gasses.
Chloro 1 3 butadiene (chloroprene) is the monomer from which the elastomer neoprene IS prepared 2 Chloro 1 3 butadiene is the thermodynamically controlled product formed by addi tion of hydrogen chloride to vinylacetylene (H2C=CHC=CH) The principal product under conditions of kinetic control is the allenic chlonde 4 chloro 1 2 butadiene Suggest a mechanism to account for the formation of each product... [Pg.420]

EPM/EPDM compounding [ELASTOMERS, SYNTHETIC - ETHYLENE-PROPYLENE-DIENE RUBBER] (Vol 8) -as insecticide [INSECT CONTROL TECHNOLOGY] (Vol 14)... [Pg.947]

A worldwide Hst of spandex fiber and related elastomer producers is shown in Table 2. Most process developments have occurred in the United States, Germany, Japan, and Korea. A large proportion of worldwide capacity is controlled by Du Pont, either directly or through subsidiaries and joint ventures. These include three plants in North America, two in South America, two in Europe, and two in Asia. [Pg.309]

Although p oly (a-olefin) s (PAO) and esters are the prominent synthetic base stocks for automotive appfications, combinations of the two are becoming the choice in offering a balance of properties such as additive solubility, sludge control, and elastomer compatibility (34). [Pg.245]

Organophosphoms compounds, primarily phosphonic acids, are used as sequestrants, scale inhibitors, deflocculants, or ion-control agents in oil wells, cooling-tower waters, and boiler-feed waters. Organophosphates are also used as plasticizers and flame retardants in plastics and elastomers, which accounted for 22% of PCl consumed. Phosphites, in conjunction with Hquid mixed metals, such as calcium—zinc and barium—cadmium heat stabilizers, function as antioxidants and stabilizer adjutants. In 1992, such phosphoms-based chemicals amounted to slightly more than 6% of all such plastic additives and represented 8500 t of phosphoms. Because PVC production is expected to increase, the use of phosphoms additive should increase 3% aimually through 1999. [Pg.383]

Plasma processing technologies ate used for surface treatments and coatings for plastics, elastomers, glasses, metals, ceramics, etc. Such treatments provide better wear characteristics, thermal stability, color, controlled electrical properties, lubricity, abrasion resistance, barrier properties, adhesion promotion, wettability, blood compatibility, and controlled light transmissivity. [Pg.434]

Meta.1 Oxides. Halogen-containing elastomers such as polychloropreae and chlorosulfonated polyethylene are cross-linked by their reaction with metal oxides, typically ziac oxide. The metal oxide reacts with halogen groups ia the polymer to produce an active iatermediate which then reacts further to produce carbon—carbon cross-links. Ziac chloride is Hberated as a by-product and it serves as an autocatalyst for this reaction. Magnesium oxide is typically used with ZnCl to control the cure rate and minimize premature cross-linking (scorch). [Pg.236]

The more important grades of thermoplastic natural mbber, which fall into the olefinic class of thermoplastic elastomers, are prepared with the natural mbber phase partially cross-linked during blending, a process known as dynamic vulcanization. The hardness of the soft blends is controlled by the natural mbber content, and typical properties of those of 50—90 hardness (Shore A) are shown in Table 7. [Pg.271]

Quahty control testing of siUcones utilizes a combination of physical and chemical measurements to ensure satisfactory product performance and processibihty. Eor example, in addition to the usual physical properties of cured elastomers, the plasticity of heat-cured mbber and the extmsion rate of TVR elastomers under standard conditions are important to the customer. Where the siUcone appHcation involves surface activity, a use test is frequently the only rehable indicator of performance. Eor example, the performance of an antifoaming agent can be tested by measuring the foam reduction when the sihcone emulsion is added to an agitated standard detergent solution. The product data sheets and technical bulletins from commercial siUcone producers can be consulted for more information. [Pg.60]

Valve, trap, and baffle can be combined in such a manner that elastomers can be used in the valve and contamination is controlled from the valve-actuator mechanisms and from the gasket of the valve-plate seal (Fig. 15) (42). [Pg.378]

Residual monomers exhibit a characteristic sharp odor even in subtoxic concentration, due to the very low olfactory threshold. Modem requirements in terms of environmental safeguard have led to significant improvements in the control of polymerization effluents, driving off gases, and residual monomer in the raw polymer. Consequendy, the acryUc elastomers of the 1990s are practically odor-free, and represent a significant improvement over the products of the past. [Pg.474]

Double-Bond Cure Sites. The effectiveness of this kind of reactive site is obvious. It allows vulcanization with conventional organic accelerators and sulfur-based curing systems, besides vulcanization by peroxides. Fast and controllable vulcanizations are expected so double-bond cure sites represent a chance to avoid post-curing. Furthermore, blending with other diene elastomers, such as nitrile mbber [9003-18-3] is gready faciUtated. [Pg.476]

The bulk viscosity control parameter for CSM, as with other elastomers, is molecular weight M and molecular-weight distribution (MWD). Mooney viscosity for CSM is determined by selection of the polyethylene precursor. [Pg.491]

The usage pattern in Europe and Japan is more dependent upon the automotive industry. However, with the recent concern about acid rain, the European and U.S. markets should show increased interest in fluorocarbon elastomers for pollution control appHcations. On the other hand, the Japanese market has a sizable outlet in electrical and general machinery manufacturing (eg, copiers). Petroleum appHcations are of Htfle interest outside the United States. [Pg.514]

Epichlorohydrin Elastomers without AGE. Polymerization on a commercial scale is done as either a solution or slurry process at 40—130°C in an aromatic, ahphatic, or ether solvent. Typical solvents are toluene, benzene, heptane, and diethyl ether. Trialkylaluniinum-water and triaLkylaluminum—water—acetylacetone catalysts are employed. A cationic, coordination mechanism is proposed for chain propagation. The product is isolated by steam coagulation. Polymerization is done as a continuous process in which the solvent, catalyst, and monomer are fed to a back-mixed reactor. Pinal product composition of ECH—EO is determined by careful control of the unreacted, or background, monomer in the reactor. In the manufacture of copolymers, the relative reactivity ratios must be considered. The reactivity ratio of EO to ECH has been estimated to be approximately 7 (35—37). [Pg.555]

AGE-Gontaining Elastomers. The manufacturing process for ECH—AGE, ECH—EO—AGE, ECH—PO—AGE, and PO—AGE is similar to that described for the ECH and ECH—EO elastomers. Solution polymerization is carried out in aromatic solvents. Slurry systems have been reported for PO—AGE (39,40). When monomer reactivity ratios are compared, AGE (and PO) are approximately 1.5 times more reactive than ECH. Since ECH is slightly less reactive than PO and AGE and considerably less reactive than EO, background monomer concentration must be controlled in ECH—AGE, ECH—EO—AGE, and ECH—PO—AGE synthesis in order to obtain a uniform product of the desired monomer composition. This is not necessary for the PO—AGE elastomer, as a copolymer of the same composition as the monomer charge is produced. AGE content of all these polymers is fairly low, less than 10%. Methods of molecular weight control, antioxidant addition, and product work-up are similar to those used for the ECH polymers described. [Pg.555]

Pinch The industrial equivalent of controlling flow bv pinching a soda straw is the pinch valve, Mves of this tvpe use fabric-reinforced elastomer sleeves that completely isolate the process fluid from the metal parts in the valve. The valve is actuated bv applying air pressure directly to the outside of the sleeve, causing it to contract or pinch. Another method is to pinch the sleeve with a linear actuator with a specially attached foot. Pinch valves are used extensively for corrosive material service and erosive sliirrv senice. This type of valve is used in applications with pressure drops up to 10 bar (145 psi),... [Pg.780]

Foam Production This is important in froth-flotation separations in the manufac ture of cellular elastomers, plastics, and glass and in certain special apphcations (e.g., food products, fire extinguishers). Unwanted foam can occur in process columns, in agitated vessels, and in reactors in which a gaseous product is formed it must be avoided, destroyed, or controlled. Berkman and Egloff (Emulsions and Foams, Reinhold, New York, 1941, pp. 112-152) have mentioned that foam is produced only in systems possessing the proper combination of interfacial tension, viscosity, volatihty, and concentration of solute or suspended solids. From the standpoint of gas comminution, foam production requires the creation of small biibbles in a hquid capable of sustaining foam. [Pg.1416]

Component fail- Ensure all materials of construction exposed to lire when cryo- low temperatures are suitable (carbon steel, plas-genic cooling is tics, elastomers in seals, lubricants, etc.) Provide adequate control system to maintain design temperature CCPS G-29 CCPS G-12 CCPS G-23 CCPS G-39 Fisher 1990 NFPA 55... [Pg.97]

Polybutadiene was first prepared in the early years of the 20th century by such methods as sodium-catalysed polymerisation of butadiene. However, the polymers produced by these methods and also by the later free-radical emulsion polymerisation techniques did not possess the properties which made them desirable rubbers. With the development of the Ziegler-Natta catalyst systems in the 1950s, it was possible to produce polymers with a controlled stereo regularity, some of which had useful properties as elastomers. [Pg.290]


See other pages where Elastomers controlling is mentioned: [Pg.256]    [Pg.256]    [Pg.207]    [Pg.202]    [Pg.233]    [Pg.235]    [Pg.562]    [Pg.376]    [Pg.512]    [Pg.421]    [Pg.421]    [Pg.236]    [Pg.249]    [Pg.493]    [Pg.493]    [Pg.55]    [Pg.493]    [Pg.55]    [Pg.495]    [Pg.39]    [Pg.156]    [Pg.469]    [Pg.472]    [Pg.510]    [Pg.557]    [Pg.15]    [Pg.1091]    [Pg.1718]    [Pg.236]    [Pg.500]   
See also in sourсe #XX -- [ Pg.381 ]




SEARCH



Diene elastomers controlled structure

Elastomer synthesis controlled radical polymerization

© 2024 chempedia.info