Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic oscillatory shear rheometers

Dynamic mechanical properties are measured to evaluate melt rheology of thermoplastics with and without additives which may modify rheological characteristics of these compositions. " Dynamic oscillatory shear rheometers are used for these purposes. Two geometries of test fixtures are used including parallel plates and cone and plate. Instrument use for these measurements must be capable of measuring forces (stress or strain) and frequency. Temperature must be controlled in a broad range and various modes of temperature sweeps should be available. Sample geometry is not specified but it should be suitable for measurement in particular experimental setup. [Pg.81]

Although the dynamic shear rheometer (DSR) can measure dynamic viscosity, its main use is to determine the viscous and elastic behaviour of bituminous binders at medium to high temperatures, particularly to determine the complex shear modulus (G ) and the phase angle (5) of bituminous binders when tested in dynamic (oscillatory) shear, using parallel plate geometry. Details for determining viscosity with DSR can be found in Tredrea (2007). [Pg.186]

In this section three topics are discussed (1) the molecular weight dependence of the rheological properties (2) the interrelation between steady shear and dynamic oscillatory shear measurements and (3) the effect of branching. The importance of the second topic rests on the fact that dynamic oscillatory properties are easier to measure and can be obtained at higher equivalent shear rates than are possible for the steady shear flow properties obtained by means of rotary rheometers. [Pg.60]

The Weissenbeig Rheogoniometer (49) is a complex dynamic viscometer that can measure elastic behavior as well as viscosity. It was the first rheometer designed to measure both shear and normal stresses and can be used for complete characterization of viscoelastic materials. Its capabilities include measurement of steady-state rotational shear within a viscosity range of 10-1 —13 mPa-s at shear rates of 10-4 — 104 s-1, of normal forces (elastic effect) exhibited by the material being sheared, and of an oscillatory shear range of 5 x 10-6 to 50 Hz, from which the elastic modulus and dynamic viscosity can be determined. A unique feature is its ability to superimpose oscillation on steady shear to provide dynamic measurements under flow conditions all measurements can be made over a wide range of temperatures (—50 to 400°C). [Pg.189]

Experimentally, the dynamic shear moduli are usually measured by applying sinusoidal oscillatory shear in constant stress or constant strain rheometers. This can be in parallel plate, cone-and-plate or concentric cylinder (Couette) geometries. An excellent monograph on rheology, including its application to polymers, is provided by Macosko (1994). [Pg.13]

The most common dynamic method is oscillatory testing, in which the sample is subjected to a sinusoidal oscillatory strain, and the resulting oscillatory stress measured. The more sophisticated rotational viscometers have the additional capability of dynamically testing liquid-like materials using small angle oscillatory shear. A parallel disc viscometer can be set up for testing solid-like materials (e.g., butter), in oscillatory shear. Some UTM-type solids rheometers, in which the moving crosshead can be made to reciprocate sinusoidally, can be used to test solid-like materials in oscillatory deformation in compression, tension or shear. [Pg.759]

Both strain- and stress-controlled rotational rheometers are widely employed to study the flow properties of non-Newtonian fluids. Different measuring geometries can be used, but coaxial cylinder, cone-plate and plate-plate are the most common choices. Using rotational rheometers, two experimental modes are mostly used to study the behavior of semi-dilute pectin solutions steady shear measurements and dynamic measurements. In the former, samples are sheared at a constant direction of shear, whereas in the latter, an oscillatory shear is used. [Pg.282]

Wasan and his research group focused on the field of interfacial rheology during the past three decades [15]. They developed novel instruments, such as oscillatory deep-channel interfacial viscometer [20,21,28] and biconical bob oscillatory interfacial rheometer [29] for interfacial shear measurement and the maximum bubble-pressure method [15,29,30] and the controlled drop tensiometer [1,31] for interfacial dilatational measurement, to resolve complex interfacial flow behavior in dynamic stress conditions [1,15,27,32-35]. Their research has clearly demonstrated the importance of interfacial rheology in the coalescence process of emulsions and foams. In connection with the maximum bubble-pressure method, it has been used in the BLM system to access the properties of lipid bilayers formed from a variety of surfactants [17,28,36]. [Pg.142]

In a dynamic experiment, a small-amplitude oscillatory shear is imposed to a molten polymer confined in the rheometer. The shear stress response of the polymeric system can be expressed as in Equation 22.14. In this equation, G and G" are dynamic moduli related to the elastic storage energy and dissipated energy of the system, respectively. For a viscoelastic fluid, two independent normal stress differences, namely, first and second normal stress differences can be defined. These quantities are calculated in terms of the differences of the components of the stress tensor, as indicated in Equation 22.15a and 22.15b, and can be obtained, for instance, from the radial pressure distribution in a cone-and-plate rheometer [5]. Some other experiments used in the determination of the normal stress differences can be found elsewhere [9, 22] ... [Pg.442]

There are many designs of rheometer for materials with different viscoelasticities. For example, liquids can be examined in the Couette geometry, which consists of vertical concentric cylinders, one of which rotates with the sample between the gap. Cone-and-plate and parallel disc cells are also widely used. For soft solids, oscillatory shearing between vertical parallel plates yields the dynamic shear moduli. [Pg.29]

Dynamic viscoelastic parameters such as the storage modulus and the loss modulus offer another measure of the mechanical properties of hydrogels. The storage and loss moduli represent the stored energy (elastic portion) and the heat dissipated (viscous portion) respectively of a viscoelastic solid. These are determined using a rheometer. The most commonly used set up for these measurements is the rotational rheometer wherein the sample is placed between two discs, the top disc rotates in an oscillatory manner in order to introduce a small strain oscillatory shear, while the torque exerted by the sample on the lower disc is measured. This allows a shear stress-strain relationship to be determined and thus for the moduli in turn to be found. Usually an amplitude sweep will be done to ensure that the sample is in the linear viscoelastic range [73, 75, 79, 80]. [Pg.200]

The shear modulus of a material can be determined by a static torsion test or by a dynamic test employing a torsional pendulum or an oscillatory rheometer. The maximum short-term shear stress (strength) of a material can also be determined from a punch shear test. [Pg.60]

Torsion property As noted, the shear modulus is usually obtained by using pendulum and oscillatory rheometer techniques. The torsional pendulum (ASTM D 2236 Dynamic Mechanical Properties of Plastics by Means of a Torsional Pendulum Test Procedure) is a popular test, since it is applicable to virtually all plastics and uses a simple specimen readily fabricated by all commercial processes or easily cut from fabricated products. [Pg.62]

ISO 6721-8 1997 Plastics - Determination of dynamic mechanical properties - Part 8 Longitudinal and shear vibration - Wave-propagation method ISO 6721-10 1999 Plastics - Determination of dynamic mechanical properties - Part 10 Complex shear viscosity using a parallel-plate oscillatory rheometer ISO 9311-2 2002 Adhesives for thermoplastic piping systems - Part 2 Determination of shear strength... [Pg.173]

Dynamic or oscillatory rheometers measure viscous and elastic modulus in shear or tension. Energy dissipation produces a phase difference, so stress, strain, and phase angle can be used to characterize complex viscosity behavior. [Pg.668]

The effect of temperature on the mechanical properties of a liquid can be investigated using a special type of dynamic mechanical analyser called an oscillatory rheometer. In this instrument the sample is contained as a thin film between two parallel plates. One of the plates is fixed while the other rotates back and forth so as to subject the liquid to a shearing motion. It is possible to calculate the shear modulus from the amplitude of the rotation and the resistance of the sample to deformation. Because the test is performed in oscillation, it is possible to separate the shear modulus (G) into storage (G ) and loss modulus (G") by measuring the phase lag between the applied strain and measured stress. Other geometries such as concentric cylinders or cone and plate are often used depending on the viscosity of the sample. [Pg.105]

Shear modulus can be determined by a static torsion test or by a dynamic test using primarily a torsional pendulum (ASTM D 2236). Also used is an oscillatory rheometer test. The torsional pendulum is applicable to virtually all plastics and uses a simple specimen readily fabricated by all commercial fabricating processes or easily cut from fabricated part. The moduli of elasticity, G for shear and E for tension, are ratios of stress to strain as measured within the proportional limits of the material. Thus the modulus is really a measure of the rigidity for shear of a material or its stifihess in tension and compression. For shear or torsion, the modulus analogous to that for tension is called the shear modulus or the modulus of rigidity, or sometimes the transverse modulus. [Pg.674]

The oscillatory deep-channel rheometer described by Nagarajan and Wasan (227) can be used to examine the rheological behavior of liquid/liquid interfaces. The method is based on monitoring the motion of tracer particles at an interface contained in a channel formed by two concentric rings, which is subjected to a well-defined flow field. The middle liquid/liquid interface and upper gas/liquid interface are both plane horizon tal layers sandwiched between the adjacent bulk phase. The walls are stationary while the base moves. In the instrument described for dynamic studies of viscoelastic interfaces the base oscillates sinusoidally. This move ment induces shear stresses in the bottom liquid that are transmitted to the interface. The interfaces are viewed from above through a microscope attached to a rotary micrometer stage which is coaxial to the cylinders. [Pg.29]

ISO 6721 1999 Plastics — Determination of dynamic mechanical properties — Part 10 Complex shear viscosity using a parallel-plate oscillatory rheometer. [Pg.96]

Plastics—Determination of Dynamic Mechanical Properties. Part 10 Complex Shear Viscosity Using a Parallel Plate Oscillatory Rheometer Plastics—Determination of Tensile-Impact Strength... [Pg.967]


See other pages where Dynamic oscillatory shear rheometers is mentioned: [Pg.260]    [Pg.189]    [Pg.189]    [Pg.765]    [Pg.243]    [Pg.266]    [Pg.159]    [Pg.92]    [Pg.387]    [Pg.211]    [Pg.55]    [Pg.29]    [Pg.269]    [Pg.562]    [Pg.235]    [Pg.487]    [Pg.486]    [Pg.226]    [Pg.777]    [Pg.2829]    [Pg.189]    [Pg.189]    [Pg.1195]    [Pg.306]    [Pg.105]    [Pg.416]    [Pg.300]    [Pg.302]    [Pg.5]   
See also in sourсe #XX -- [ Pg.81 ]




SEARCH



Dynamic rheometers

Dynamic shear rheometer

Oscillatory

Oscillatory dynamics

Oscillatory rheometer

Oscillatory shearing

Rheometer shear

Shear dynamic

© 2024 chempedia.info